Step |
Hyp |
Ref |
Expression |
1 |
|
f1fn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) |
2 |
|
fvelimab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
5 |
|
ssel |
⊢ ( 𝑌 ⊆ 𝐴 → ( 𝑧 ∈ 𝑌 → 𝑧 ∈ 𝐴 ) ) |
6 |
5
|
impac |
⊢ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑌 ) → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑌 ) ) |
7 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ↔ 𝑧 = 𝑋 ) ) |
8 |
7
|
ancom2s |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ↔ 𝑧 = 𝑋 ) ) |
9 |
8
|
biimpd |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑧 = 𝑋 ) ) |
10 |
9
|
anassrs |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑧 = 𝑋 ) ) |
11 |
|
eleq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ∈ 𝑌 ↔ 𝑋 ∈ 𝑌 ) ) |
12 |
11
|
biimpcd |
⊢ ( 𝑧 ∈ 𝑌 → ( 𝑧 = 𝑋 → 𝑋 ∈ 𝑌 ) ) |
13 |
10 12
|
sylan9 |
⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
14 |
13
|
anasss |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
15 |
6 14
|
sylan2 |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑌 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
16 |
15
|
anassrs |
⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
17 |
16
|
rexlimdva |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
18 |
17
|
3impa |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
19 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) |
20 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
21 |
20
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) → ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
22 |
19 21
|
mpan2 |
⊢ ( 𝑋 ∈ 𝑌 → ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
23 |
18 22
|
impbid1 |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ↔ 𝑋 ∈ 𝑌 ) ) |
24 |
4 23
|
bitrd |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ 𝑋 ∈ 𝑌 ) ) |