Metamath Proof Explorer


Theorem f1elima

Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion f1elima ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑋 ) ∈ ( 𝐹𝑌 ) ↔ 𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 f1fn ( 𝐹 : 𝐴1-1𝐵𝐹 Fn 𝐴 )
2 fvelimab ( ( 𝐹 Fn 𝐴𝑌𝐴 ) → ( ( 𝐹𝑋 ) ∈ ( 𝐹𝑌 ) ↔ ∃ 𝑧𝑌 ( 𝐹𝑧 ) = ( 𝐹𝑋 ) ) )
3 1 2 sylan ( ( 𝐹 : 𝐴1-1𝐵𝑌𝐴 ) → ( ( 𝐹𝑋 ) ∈ ( 𝐹𝑌 ) ↔ ∃ 𝑧𝑌 ( 𝐹𝑧 ) = ( 𝐹𝑋 ) ) )
4 3 3adant2 ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑋 ) ∈ ( 𝐹𝑌 ) ↔ ∃ 𝑧𝑌 ( 𝐹𝑧 ) = ( 𝐹𝑋 ) ) )
5 ssel ( 𝑌𝐴 → ( 𝑧𝑌𝑧𝐴 ) )
6 5 impac ( ( 𝑌𝐴𝑧𝑌 ) → ( 𝑧𝐴𝑧𝑌 ) )
7 f1fveq ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝑧𝐴𝑋𝐴 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) ↔ 𝑧 = 𝑋 ) )
8 7 ancom2s ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝑋𝐴𝑧𝐴 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) ↔ 𝑧 = 𝑋 ) )
9 8 biimpd ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝑋𝐴𝑧𝐴 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) → 𝑧 = 𝑋 ) )
10 9 anassrs ( ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ∧ 𝑧𝐴 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) → 𝑧 = 𝑋 ) )
11 eleq1 ( 𝑧 = 𝑋 → ( 𝑧𝑌𝑋𝑌 ) )
12 11 biimpcd ( 𝑧𝑌 → ( 𝑧 = 𝑋𝑋𝑌 ) )
13 10 12 sylan9 ( ( ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ∧ 𝑧𝐴 ) ∧ 𝑧𝑌 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) → 𝑋𝑌 ) )
14 13 anasss ( ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ∧ ( 𝑧𝐴𝑧𝑌 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) → 𝑋𝑌 ) )
15 6 14 sylan2 ( ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ∧ ( 𝑌𝐴𝑧𝑌 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) → 𝑋𝑌 ) )
16 15 anassrs ( ( ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ∧ 𝑌𝐴 ) ∧ 𝑧𝑌 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) → 𝑋𝑌 ) )
17 16 rexlimdva ( ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ∧ 𝑌𝐴 ) → ( ∃ 𝑧𝑌 ( 𝐹𝑧 ) = ( 𝐹𝑋 ) → 𝑋𝑌 ) )
18 17 3impa ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴𝑌𝐴 ) → ( ∃ 𝑧𝑌 ( 𝐹𝑧 ) = ( 𝐹𝑋 ) → 𝑋𝑌 ) )
19 eqid ( 𝐹𝑋 ) = ( 𝐹𝑋 )
20 fveqeq2 ( 𝑧 = 𝑋 → ( ( 𝐹𝑧 ) = ( 𝐹𝑋 ) ↔ ( 𝐹𝑋 ) = ( 𝐹𝑋 ) ) )
21 20 rspcev ( ( 𝑋𝑌 ∧ ( 𝐹𝑋 ) = ( 𝐹𝑋 ) ) → ∃ 𝑧𝑌 ( 𝐹𝑧 ) = ( 𝐹𝑋 ) )
22 19 21 mpan2 ( 𝑋𝑌 → ∃ 𝑧𝑌 ( 𝐹𝑧 ) = ( 𝐹𝑋 ) )
23 18 22 impbid1 ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴𝑌𝐴 ) → ( ∃ 𝑧𝑌 ( 𝐹𝑧 ) = ( 𝐹𝑋 ) ↔ 𝑋𝑌 ) )
24 4 23 bitrd ( ( 𝐹 : 𝐴1-1𝐵𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑋 ) ∈ ( 𝐹𝑌 ) ↔ 𝑋𝑌 ) )