Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1eq123d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
f1eq123d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
f1eq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
Assertion | f1eq123d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐺 : 𝐵 –1-1→ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
2 | f1eq123d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | f1eq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
4 | f1eq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐺 : 𝐴 –1-1→ 𝐶 ) ) | |
5 | 1 4 | syl | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐺 : 𝐴 –1-1→ 𝐶 ) ) |
6 | f1eq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐺 : 𝐴 –1-1→ 𝐶 ↔ 𝐺 : 𝐵 –1-1→ 𝐶 ) ) | |
7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐺 : 𝐴 –1-1→ 𝐶 ↔ 𝐺 : 𝐵 –1-1→ 𝐶 ) ) |
8 | f1eq3 | ⊢ ( 𝐶 = 𝐷 → ( 𝐺 : 𝐵 –1-1→ 𝐶 ↔ 𝐺 : 𝐵 –1-1→ 𝐷 ) ) | |
9 | 3 8 | syl | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 –1-1→ 𝐶 ↔ 𝐺 : 𝐵 –1-1→ 𝐷 ) ) |
10 | 5 7 9 | 3bitrd | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐺 : 𝐵 –1-1→ 𝐷 ) ) |