Metamath Proof Explorer


Theorem f1eq2

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq2 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴1-1𝐶𝐹 : 𝐵1-1𝐶 ) )

Proof

Step Hyp Ref Expression
1 feq2 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴𝐶𝐹 : 𝐵𝐶 ) )
2 1 anbi1d ( 𝐴 = 𝐵 → ( ( 𝐹 : 𝐴𝐶 ∧ Fun 𝐹 ) ↔ ( 𝐹 : 𝐵𝐶 ∧ Fun 𝐹 ) ) )
3 df-f1 ( 𝐹 : 𝐴1-1𝐶 ↔ ( 𝐹 : 𝐴𝐶 ∧ Fun 𝐹 ) )
4 df-f1 ( 𝐹 : 𝐵1-1𝐶 ↔ ( 𝐹 : 𝐵𝐶 ∧ Fun 𝐹 ) )
5 2 3 4 3bitr4g ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴1-1𝐶𝐹 : 𝐵1-1𝐶 ) )