Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1eq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐹 : 𝐵 –1-1→ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ Fun ◡ 𝐹 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ Fun ◡ 𝐹 ) ) ) |
| 3 | df-f1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ Fun ◡ 𝐹 ) ) | |
| 4 | df-f1 | ⊢ ( 𝐹 : 𝐵 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ Fun ◡ 𝐹 ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐹 : 𝐵 –1-1→ 𝐶 ) ) |