Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1eq3 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶 –1-1→ 𝐴 ↔ 𝐹 : 𝐶 –1-1→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq3 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶 ⟶ 𝐴 ↔ 𝐹 : 𝐶 ⟶ 𝐵 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ Fun ◡ 𝐹 ) ↔ ( 𝐹 : 𝐶 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) ) |
| 3 | df-f1 | ⊢ ( 𝐹 : 𝐶 –1-1→ 𝐴 ↔ ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ Fun ◡ 𝐹 ) ) | |
| 4 | df-f1 | ⊢ ( 𝐹 : 𝐶 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐶 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶 –1-1→ 𝐴 ↔ 𝐹 : 𝐶 –1-1→ 𝐵 ) ) |