| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1cocnv1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  ( ◡ 𝐹  ∘  𝐹 )  =  (  I   ↾  𝐴 ) ) | 
						
							| 2 |  | coeq2 | ⊢ ( 𝐹  =  𝐺  →  ( ◡ 𝐹  ∘  𝐹 )  =  ( ◡ 𝐹  ∘  𝐺 ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( 𝐹  =  𝐺  →  ( ( ◡ 𝐹  ∘  𝐹 )  =  (  I   ↾  𝐴 )  ↔  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) ) ) | 
						
							| 4 | 1 3 | syl5ibcom | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  ( 𝐹  =  𝐺  →  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐹  =  𝐺  →  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) ) ) | 
						
							| 6 |  | f1fn | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵  →  𝐺  Fn  𝐴 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  𝐺  Fn  𝐴 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  →  𝐺  Fn  𝐴 ) | 
						
							| 9 |  | f1fn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  𝐹  Fn  𝐴 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  →  𝐹  Fn  𝐴 ) | 
						
							| 12 |  | equid | ⊢ 𝑥  =  𝑥 | 
						
							| 13 |  | resieq | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 (  I   ↾  𝐴 ) 𝑥  ↔  𝑥  =  𝑥 ) ) | 
						
							| 14 | 12 13 | mpbiri | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥 (  I   ↾  𝐴 ) 𝑥 ) | 
						
							| 15 | 14 | anidms | ⊢ ( 𝑥  ∈  𝐴  →  𝑥 (  I   ↾  𝐴 ) 𝑥 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥 (  I   ↾  𝐴 ) 𝑥 ) | 
						
							| 17 |  | breq | ⊢ ( ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 )  →  ( 𝑥 ( ◡ 𝐹  ∘  𝐺 ) 𝑥  ↔  𝑥 (  I   ↾  𝐴 ) 𝑥 ) ) | 
						
							| 18 | 17 | ad2antlr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 ( ◡ 𝐹  ∘  𝐺 ) 𝑥  ↔  𝑥 (  I   ↾  𝐴 ) 𝑥 ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥 ( ◡ 𝐹  ∘  𝐺 ) 𝑥 ) | 
						
							| 20 |  | fnfun | ⊢ ( 𝐺  Fn  𝐴  →  Fun  𝐺 ) | 
						
							| 21 | 7 20 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  Fun  𝐺 ) | 
						
							| 22 | 7 | fndmd | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  dom  𝐺  =  𝐴 ) | 
						
							| 23 | 22 | eleq2d | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( 𝑥  ∈  dom  𝐺  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 24 | 23 | biimpar | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  dom  𝐺 ) | 
						
							| 25 |  | funopfvb | ⊢ ( ( Fun  𝐺  ∧  𝑥  ∈  dom  𝐺 )  →  ( ( 𝐺 ‘ 𝑥 )  =  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐺 ) ) | 
						
							| 26 | 21 24 25 | syl2an2r | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑥 )  =  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐺 ) ) | 
						
							| 27 | 26 | bicomd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝐺  ↔  ( 𝐺 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 28 |  | df-br | ⊢ ( 𝑥 𝐺 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐺 ) | 
						
							| 29 |  | eqcom | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  ↔  ( 𝐺 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 30 | 27 28 29 | 3bitr4g | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 𝐺 𝑦  ↔  𝑦  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 31 | 30 | biimpd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 𝐺 𝑦  →  𝑦  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 32 |  | df-br | ⊢ ( 𝑥 𝐹 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐹 ) | 
						
							| 33 |  | fnfun | ⊢ ( 𝐹  Fn  𝐴  →  Fun  𝐹 ) | 
						
							| 34 | 10 33 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  Fun  𝐹 ) | 
						
							| 35 | 10 | fndmd | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  dom  𝐹  =  𝐴 ) | 
						
							| 36 | 35 | eleq2d | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( 𝑥  ∈  dom  𝐹  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 37 | 36 | biimpar | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 38 |  | funopfvb | ⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐹 ) ) | 
						
							| 39 | 34 37 38 | syl2an2r | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐹 ) ) | 
						
							| 40 | 32 39 | bitr4id | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 𝐹 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 41 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 42 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 43 | 41 42 | brcnv | ⊢ ( 𝑦 ◡ 𝐹 𝑥  ↔  𝑥 𝐹 𝑦 ) | 
						
							| 44 |  | eqcom | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 45 | 40 43 44 | 3bitr4g | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦 ◡ 𝐹 𝑥  ↔  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 46 | 45 | biimpd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦 ◡ 𝐹 𝑥  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 47 | 31 46 | anim12d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥 𝐺 𝑦  ∧  𝑦 ◡ 𝐹 𝑥 )  →  ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 48 | 47 | eximdv | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑦 ( 𝑥 𝐺 𝑦  ∧  𝑦 ◡ 𝐹 𝑥 )  →  ∃ 𝑦 ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 49 | 42 42 | brco | ⊢ ( 𝑥 ( ◡ 𝐹  ∘  𝐺 ) 𝑥  ↔  ∃ 𝑦 ( 𝑥 𝐺 𝑦  ∧  𝑦 ◡ 𝐹 𝑥 ) ) | 
						
							| 50 |  | fvex | ⊢ ( 𝐺 ‘ 𝑥 )  ∈  V | 
						
							| 51 | 50 | eqvinc | ⊢ ( ( 𝐺 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 )  ↔  ∃ 𝑦 ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 52 | 48 49 51 | 3imtr4g | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 ( ◡ 𝐹  ∘  𝐺 ) 𝑥  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 | adantlr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 ( ◡ 𝐹  ∘  𝐺 ) 𝑥  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 54 | 19 53 | mpd | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 55 | 8 11 54 | eqfnfvd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  →  𝐺  =  𝐹 ) | 
						
							| 56 | 55 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  ∧  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) )  →  𝐹  =  𝐺 ) | 
						
							| 57 | 56 | ex | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 )  →  𝐹  =  𝐺 ) ) | 
						
							| 58 | 5 57 | impbid | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐹  =  𝐺  ↔  ( ◡ 𝐹  ∘  𝐺 )  =  (  I   ↾  𝐴 ) ) ) |