Metamath Proof Explorer


Theorem f1f1orn

Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004)

Ref Expression
Assertion f1f1orn ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴1-1-onto→ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 f1fn ( 𝐹 : 𝐴1-1𝐵𝐹 Fn 𝐴 )
2 df-f1 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ Fun 𝐹 ) )
3 2 simprbi ( 𝐹 : 𝐴1-1𝐵 → Fun 𝐹 )
4 f1orn ( 𝐹 : 𝐴1-1-onto→ ran 𝐹 ↔ ( 𝐹 Fn 𝐴 ∧ Fun 𝐹 ) )
5 1 3 4 sylanbrc ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴1-1-onto→ ran 𝐹 )