| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 2 |
|
f1f |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 |
3
|
ffnd |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| 6 |
3
|
frnd |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
| 7 |
|
df-pss |
⊢ ( ran 𝐹 ⊊ 𝐵 ↔ ( ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ 𝐵 ) ) |
| 8 |
7
|
baib |
⊢ ( ran 𝐹 ⊆ 𝐵 → ( ran 𝐹 ⊊ 𝐵 ↔ ran 𝐹 ≠ 𝐵 ) ) |
| 9 |
6 8
|
syl |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 ↔ ran 𝐹 ≠ 𝐵 ) ) |
| 10 |
|
php3 |
⊢ ( ( 𝐵 ∈ Fin ∧ ran 𝐹 ⊊ 𝐵 ) → ran 𝐹 ≺ 𝐵 ) |
| 11 |
10
|
ex |
⊢ ( 𝐵 ∈ Fin → ( ran 𝐹 ⊊ 𝐵 → ran 𝐹 ≺ 𝐵 ) ) |
| 12 |
11
|
ad2antlr |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → ran 𝐹 ≺ 𝐵 ) ) |
| 13 |
|
enfii |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ∈ Fin ) |
| 14 |
13
|
ancoms |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 15 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 16 |
|
f1oenfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) → 𝐴 ≈ ran 𝐹 ) |
| 17 |
14 15 16
|
syl2an |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ ran 𝐹 ) |
| 18 |
|
endom |
⊢ ( 𝐴 ≈ ran 𝐹 → 𝐴 ≼ ran 𝐹 ) |
| 19 |
|
domsdomtrfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ ran 𝐹 ∧ ran 𝐹 ≺ 𝐵 ) → 𝐴 ≺ 𝐵 ) |
| 20 |
18 19
|
syl3an2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ ran 𝐹 ∧ ran 𝐹 ≺ 𝐵 ) → 𝐴 ≺ 𝐵 ) |
| 21 |
20
|
3expia |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ ran 𝐹 ) → ( ran 𝐹 ≺ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
| 22 |
14 17 21
|
syl2an2r |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ≺ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
| 23 |
12 22
|
syld |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
| 24 |
|
sdomnen |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) |
| 25 |
23 24
|
syl6 |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 26 |
9 25
|
sylbird |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ≠ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 27 |
26
|
necon4ad |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐴 ≈ 𝐵 → ran 𝐹 = 𝐵 ) ) |
| 28 |
5 27
|
mpd |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ran 𝐹 = 𝐵 ) |
| 29 |
|
df-fo |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ) ) |
| 30 |
4 28 29
|
sylanbrc |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 31 |
|
df-f1o |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) |
| 32 |
1 30 31
|
sylanbrc |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 33 |
32
|
ex |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 34 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 35 |
33 34
|
impbid1 |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |