Metamath Proof Explorer


Theorem f1fveq

Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997)

Ref Expression
Assertion f1fveq ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) ↔ 𝐶 = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 f1veqaeq ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) → 𝐶 = 𝐷 ) )
2 fveq2 ( 𝐶 = 𝐷 → ( 𝐹𝐶 ) = ( 𝐹𝐷 ) )
3 1 2 impbid1 ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) ↔ 𝐶 = 𝐷 ) )