| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ghm0to0.a | ⊢ 𝐴  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | f1ghm0to0.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | f1ghm0to0.n | ⊢ 𝑁  =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | f1ghm0to0.0 | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 5 | 3 4 | ghmid | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  ( 𝐹 ‘ 𝑁 )  =   0  ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑁 )  =   0  ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑁 )  ↔  ( 𝐹 ‘ 𝑋 )  =   0  ) ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  𝑋  ∈  𝐴 ) | 
						
							| 10 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝑅  ∈  Grp ) | 
						
							| 11 | 1 3 | grpidcl | ⊢ ( 𝑅  ∈  Grp  →  𝑁  ∈  𝐴 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝑁  ∈  𝐴 ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  𝑁  ∈  𝐴 ) | 
						
							| 14 |  | f1veqaeq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  ( 𝑋  ∈  𝐴  ∧  𝑁  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑁 )  →  𝑋  =  𝑁 ) ) | 
						
							| 15 | 8 9 13 14 | syl12anc | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑁 )  →  𝑋  =  𝑁 ) ) | 
						
							| 16 | 7 15 | sylbird | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  =   0   →  𝑋  =  𝑁 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑋  =  𝑁  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 18 | 17 6 | sylan9eqr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  ∧  𝑋  =  𝑁 )  →  ( 𝐹 ‘ 𝑋 )  =   0  ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( 𝑋  =  𝑁  →  ( 𝐹 ‘ 𝑋 )  =   0  ) ) | 
						
							| 20 | 16 19 | impbid | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  =   0   ↔  𝑋  =  𝑁 ) ) |