Step |
Hyp |
Ref |
Expression |
1 |
|
f1ghm0to0.a |
⊢ 𝐴 = ( Base ‘ 𝑅 ) |
2 |
|
f1ghm0to0.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
f1ghm0to0.n |
⊢ 𝑁 = ( 0g ‘ 𝑆 ) |
4 |
|
f1ghm0to0.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
4 3
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ 0 ) = 𝑁 ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 0 ) = 𝑁 ) |
7 |
6
|
eqeq2d |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 0 ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑁 ) ) |
8 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
9 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
10 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp ) |
11 |
1 4
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐴 ) |
12 |
10 11
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 0 ∈ 𝐴 ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 0 ∈ 𝐴 ) |
14 |
|
f1veqaeq |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 0 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 0 ) → 𝑋 = 0 ) ) |
15 |
8 9 13 14
|
syl12anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 0 ) → 𝑋 = 0 ) ) |
16 |
7 15
|
sylbird |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 → 𝑋 = 0 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑋 = 0 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 0 ) ) |
18 |
17 6
|
sylan9eqr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑋 = 0 ) → ( 𝐹 ‘ 𝑋 ) = 𝑁 ) |
19 |
18
|
ex |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 = 0 → ( 𝐹 ‘ 𝑋 ) = 𝑁 ) ) |
20 |
16 19
|
impbid |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 ↔ 𝑋 = 0 ) ) |