Step |
Hyp |
Ref |
Expression |
1 |
|
resima |
⊢ ( ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) “ ( 𝐹 “ 𝐶 ) ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝐶 ) ) |
2 |
|
df-f1 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Fun ◡ 𝐹 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → Fun ◡ 𝐹 ) |
5 |
|
funcnvres |
⊢ ( Fun ◡ 𝐹 → ◡ ( 𝐹 ↾ 𝐶 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ◡ ( 𝐹 ↾ 𝐶 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) ) |
7 |
6
|
imaeq1d |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ◡ ( 𝐹 ↾ 𝐶 ) “ ( 𝐹 “ 𝐶 ) ) = ( ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) “ ( 𝐹 “ 𝐶 ) ) ) |
8 |
|
f1ores |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |
9 |
|
f1ocnv |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) → ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 ) |
11 |
|
imadmrn |
⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) “ dom ◡ ( 𝐹 ↾ 𝐶 ) ) = ran ◡ ( 𝐹 ↾ 𝐶 ) |
12 |
|
f1odm |
⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → dom ◡ ( 𝐹 ↾ 𝐶 ) = ( 𝐹 “ 𝐶 ) ) |
13 |
12
|
imaeq2d |
⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → ( ◡ ( 𝐹 ↾ 𝐶 ) “ dom ◡ ( 𝐹 ↾ 𝐶 ) ) = ( ◡ ( 𝐹 ↾ 𝐶 ) “ ( 𝐹 “ 𝐶 ) ) ) |
14 |
|
f1ofo |
⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –onto→ 𝐶 ) |
15 |
|
forn |
⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –onto→ 𝐶 → ran ◡ ( 𝐹 ↾ 𝐶 ) = 𝐶 ) |
16 |
14 15
|
syl |
⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → ran ◡ ( 𝐹 ↾ 𝐶 ) = 𝐶 ) |
17 |
11 13 16
|
3eqtr3a |
⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → ( ◡ ( 𝐹 ↾ 𝐶 ) “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |
18 |
10 17
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ◡ ( 𝐹 ↾ 𝐶 ) “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |
19 |
7 18
|
eqtr3d |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |
20 |
1 19
|
eqtr3id |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |