| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
| 2 |
|
imadif |
⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) = ( ( 𝐹 “ dom 𝐹 ) ∖ ( 𝐹 “ 𝐴 ) ) ) |
| 3 |
2
|
sseq1d |
⊢ ( Fun ◡ 𝐹 → ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ↔ ( ( 𝐹 “ dom 𝐹 ) ∖ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) ) |
| 4 |
|
ssundif |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( ( 𝐹 “ 𝐴 ) ∪ ( 𝐹 “ 𝐴 ) ) ↔ ( ( 𝐹 “ dom 𝐹 ) ∖ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) |
| 5 |
|
unidm |
⊢ ( ( 𝐹 “ 𝐴 ) ∪ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ 𝐴 ) |
| 6 |
5
|
sseq2i |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( ( 𝐹 “ 𝐴 ) ∪ ( 𝐹 “ 𝐴 ) ) ↔ ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) ) |
| 7 |
|
id |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) ) |
| 8 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
| 9 |
8 1
|
sseqtrri |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ( 𝐹 “ dom 𝐹 ) |
| 10 |
9
|
a1i |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ 𝐴 ) ⊆ ( 𝐹 “ dom 𝐹 ) ) |
| 11 |
7 10
|
eqssd |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) |
| 12 |
6 11
|
sylbi |
⊢ ( ( 𝐹 “ dom 𝐹 ) ⊆ ( ( 𝐹 “ 𝐴 ) ∪ ( 𝐹 “ 𝐴 ) ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) |
| 13 |
4 12
|
sylbir |
⊢ ( ( ( 𝐹 “ dom 𝐹 ) ∖ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) |
| 14 |
3 13
|
biimtrdi |
⊢ ( Fun ◡ 𝐹 → ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) ) |
| 15 |
14
|
imp |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐴 ) ) |
| 16 |
1 15
|
eqtr3id |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) → ran 𝐹 = ( 𝐹 “ 𝐴 ) ) |
| 17 |
16
|
ex |
⊢ ( Fun ◡ 𝐹 → ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) → ran 𝐹 = ( 𝐹 “ 𝐴 ) ) ) |
| 18 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
| 19 |
18
|
eqcomi |
⊢ ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
| 20 |
19
|
sseq2i |
⊢ ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ran ( 𝐹 ↾ 𝐴 ) ↔ ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ( 𝐹 “ 𝐴 ) ) |
| 21 |
19
|
eqeq2i |
⊢ ( ran 𝐹 = ran ( 𝐹 ↾ 𝐴 ) ↔ ran 𝐹 = ( 𝐹 “ 𝐴 ) ) |
| 22 |
17 20 21
|
3imtr4g |
⊢ ( Fun ◡ 𝐹 → ( ( 𝐹 “ ( dom 𝐹 ∖ 𝐴 ) ) ⊆ ran ( 𝐹 ↾ 𝐴 ) → ran 𝐹 = ran ( 𝐹 ↾ 𝐴 ) ) ) |