Metamath Proof Explorer


Theorem f1imaen

Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by NM, 30-Sep-2004)

Ref Expression
Hypothesis f1imaen.1 𝐶 ∈ V
Assertion f1imaen ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) ≈ 𝐶 )

Proof

Step Hyp Ref Expression
1 f1imaen.1 𝐶 ∈ V
2 f1imaeng ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴𝐶 ∈ V ) → ( 𝐹𝐶 ) ≈ 𝐶 )
3 1 2 mp3an3 ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) ≈ 𝐶 )