| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
| 2 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
| 3 |
|
f1f |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 |
|
fimass |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 7 |
2 6
|
ssexd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 “ 𝐶 ) ∈ V ) |
| 8 |
|
f1ores |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |
| 9 |
8
|
ad2ant2r |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |
| 10 |
|
f1oen2g |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( 𝐹 “ 𝐶 ) ∈ V ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) → 𝐶 ≈ ( 𝐹 “ 𝐶 ) ) |
| 11 |
1 7 9 10
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ≈ ( 𝐹 “ 𝐶 ) ) |
| 12 |
11
|
ensymd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) |