Metamath Proof Explorer


Theorem f1imaen2g

Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng does not need ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion f1imaen2g ( ( ( 𝐹 : 𝐴1-1𝐵𝐵𝑉 ) ∧ ( 𝐶𝐴𝐶𝑉 ) ) → ( 𝐹𝐶 ) ≈ 𝐶 )

Proof

Step Hyp Ref Expression
1 simprr ( ( ( 𝐹 : 𝐴1-1𝐵𝐵𝑉 ) ∧ ( 𝐶𝐴𝐶𝑉 ) ) → 𝐶𝑉 )
2 simplr ( ( ( 𝐹 : 𝐴1-1𝐵𝐵𝑉 ) ∧ ( 𝐶𝐴𝐶𝑉 ) ) → 𝐵𝑉 )
3 f1f ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴𝐵 )
4 fimass ( 𝐹 : 𝐴𝐵 → ( 𝐹𝐶 ) ⊆ 𝐵 )
5 3 4 syl ( 𝐹 : 𝐴1-1𝐵 → ( 𝐹𝐶 ) ⊆ 𝐵 )
6 5 ad2antrr ( ( ( 𝐹 : 𝐴1-1𝐵𝐵𝑉 ) ∧ ( 𝐶𝐴𝐶𝑉 ) ) → ( 𝐹𝐶 ) ⊆ 𝐵 )
7 2 6 ssexd ( ( ( 𝐹 : 𝐴1-1𝐵𝐵𝑉 ) ∧ ( 𝐶𝐴𝐶𝑉 ) ) → ( 𝐹𝐶 ) ∈ V )
8 f1ores ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) )
9 8 ad2ant2r ( ( ( 𝐹 : 𝐴1-1𝐵𝐵𝑉 ) ∧ ( 𝐶𝐴𝐶𝑉 ) ) → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) )
10 f1oen2g ( ( 𝐶𝑉 ∧ ( 𝐹𝐶 ) ∈ V ∧ ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) ) → 𝐶 ≈ ( 𝐹𝐶 ) )
11 1 7 9 10 syl3anc ( ( ( 𝐹 : 𝐴1-1𝐵𝐵𝑉 ) ∧ ( 𝐶𝐴𝐶𝑉 ) ) → 𝐶 ≈ ( 𝐹𝐶 ) )
12 11 ensymd ( ( ( 𝐹 : 𝐴1-1𝐵𝐵𝑉 ) ∧ ( 𝐶𝐴𝐶𝑉 ) ) → ( 𝐹𝐶 ) ≈ 𝐶 )