Step |
Hyp |
Ref |
Expression |
1 |
|
f1ores |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |
2 |
|
f1oenfi |
⊢ ( ( 𝐶 ∈ Fin ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) → 𝐶 ≈ ( 𝐹 “ 𝐶 ) ) |
3 |
|
ensymfib |
⊢ ( 𝐶 ∈ Fin → ( 𝐶 ≈ ( 𝐹 “ 𝐶 ) ↔ ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐶 ∈ Fin ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) → ( 𝐶 ≈ ( 𝐹 “ 𝐶 ) ↔ ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) ) |
5 |
2 4
|
mpbid |
⊢ ( ( 𝐶 ∈ Fin ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) → ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) |
6 |
1 5
|
sylan2 |
⊢ ( ( 𝐶 ∈ Fin ∧ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ) → ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) |
7 |
6
|
3impb |
⊢ ( ( 𝐶 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) |
8 |
7
|
3coml |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin ) → ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) |