Metamath Proof Explorer


Theorem f1imaeq

Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion f1imaeq ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) ↔ 𝐶 = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 f1imass ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐶 ) ⊆ ( 𝐹𝐷 ) ↔ 𝐶𝐷 ) )
2 f1imass ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐷𝐴𝐶𝐴 ) ) → ( ( 𝐹𝐷 ) ⊆ ( 𝐹𝐶 ) ↔ 𝐷𝐶 ) )
3 2 ancom2s ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐷 ) ⊆ ( 𝐹𝐶 ) ↔ 𝐷𝐶 ) )
4 1 3 anbi12d ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( ( 𝐹𝐶 ) ⊆ ( 𝐹𝐷 ) ∧ ( 𝐹𝐷 ) ⊆ ( 𝐹𝐶 ) ) ↔ ( 𝐶𝐷𝐷𝐶 ) ) )
5 eqss ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) ↔ ( ( 𝐹𝐶 ) ⊆ ( 𝐹𝐷 ) ∧ ( 𝐹𝐷 ) ⊆ ( 𝐹𝐶 ) ) )
6 eqss ( 𝐶 = 𝐷 ↔ ( 𝐶𝐷𝐷𝐶 ) )
7 4 5 6 3bitr4g ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) ↔ 𝐶 = 𝐷 ) )