| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fiun.1 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
| 2 |
|
fiun.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
vex |
⊢ 𝑢 ∈ V |
| 4 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑢 → ( 𝑧 = 𝐵 ↔ 𝑢 = 𝐵 ) ) |
| 5 |
4
|
rexbidv |
⊢ ( 𝑧 = 𝑢 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) ) |
| 6 |
3 5
|
elab |
⊢ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) |
| 7 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑥 ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) |
| 9 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 |
| 10 |
9
|
nfab |
⊢ Ⅎ 𝑥 { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
| 11 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) |
| 12 |
10 11
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) |
| 13 |
8 12
|
nfan |
⊢ Ⅎ 𝑥 ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 14 |
|
f1eq1 |
⊢ ( 𝑢 = 𝐵 → ( 𝑢 : 𝐷 –1-1→ 𝑆 ↔ 𝐵 : 𝐷 –1-1→ 𝑆 ) ) |
| 15 |
14
|
biimparc |
⊢ ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ 𝑢 = 𝐵 ) → 𝑢 : 𝐷 –1-1→ 𝑆 ) |
| 16 |
|
df-f1 |
⊢ ( 𝑢 : 𝐷 –1-1→ 𝑆 ↔ ( 𝑢 : 𝐷 ⟶ 𝑆 ∧ Fun ◡ 𝑢 ) ) |
| 17 |
|
ffun |
⊢ ( 𝑢 : 𝐷 ⟶ 𝑆 → Fun 𝑢 ) |
| 18 |
17
|
anim1i |
⊢ ( ( 𝑢 : 𝐷 ⟶ 𝑆 ∧ Fun ◡ 𝑢 ) → ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ) |
| 19 |
16 18
|
sylbi |
⊢ ( 𝑢 : 𝐷 –1-1→ 𝑆 → ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ) |
| 20 |
15 19
|
syl |
⊢ ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ) |
| 21 |
20
|
adantlr |
⊢ ( ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ) |
| 22 |
|
f1f |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → 𝐵 : 𝐷 ⟶ 𝑆 ) |
| 23 |
1
|
fiunlem |
⊢ ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 24 |
22 23
|
sylanl1 |
⊢ ( ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 25 |
21 24
|
jca |
⊢ ( ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 26 |
25
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) |
| 27 |
13 26
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 28 |
7 27
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 29 |
6 28
|
sylan2b |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 30 |
29
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∀ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 31 |
|
fun11uni |
⊢ ( ∀ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) → ( Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ∧ Fun ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) ) |
| 32 |
30 31
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ∧ Fun ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) ) |
| 33 |
32
|
simpld |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 34 |
2
|
dfiun2 |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
| 35 |
34
|
funeqi |
⊢ ( Fun ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 36 |
33 35
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 37 |
3
|
eldm2 |
⊢ ( 𝑢 ∈ dom 𝐵 ↔ ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
| 38 |
|
f1dm |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → dom 𝐵 = 𝐷 ) |
| 39 |
38
|
eleq2d |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → ( 𝑢 ∈ dom 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
| 40 |
37 39
|
bitr3id |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
| 42 |
41
|
ralrexbid |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 ∈ 𝐷 ) ) |
| 43 |
|
eliun |
⊢ ( 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
| 44 |
43
|
exbii |
⊢ ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑣 ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
| 45 |
3
|
eldm2 |
⊢ ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 46 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ ∃ 𝑣 ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
| 47 |
44 45 46
|
3bitr4i |
⊢ ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
| 48 |
|
eliun |
⊢ ( 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐷 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 ∈ 𝐷 ) |
| 49 |
42 47 48
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐷 ) ) |
| 50 |
49
|
eqrdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷 ) |
| 51 |
|
df-fn |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ↔ ( Fun ∪ 𝑥 ∈ 𝐴 𝐵 ∧ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷 ) ) |
| 52 |
36 50 51
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ) |
| 53 |
|
rniun |
⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
| 54 |
22
|
frnd |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → ran 𝐵 ⊆ 𝑆 ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ran 𝐵 ⊆ 𝑆 ) |
| 56 |
55
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) |
| 57 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ↔ ∀ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) |
| 58 |
56 57
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) |
| 59 |
53 58
|
eqsstrid |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆 ) |
| 60 |
|
df-f |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ∧ ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆 ) ) |
| 61 |
52 59 60
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ) |
| 62 |
32
|
simprd |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 63 |
34
|
cnveqi |
⊢ ◡ ∪ 𝑥 ∈ 𝐴 𝐵 = ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
| 64 |
63
|
funeqi |
⊢ ( Fun ◡ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Fun ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 65 |
62 64
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ◡ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 66 |
|
df-f1 |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 –1-1→ 𝑆 ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ∧ Fun ◡ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 67 |
61 65 66
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 –1-1→ 𝑆 ) |