Step |
Hyp |
Ref |
Expression |
1 |
|
fiun.1 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
2 |
|
fiun.2 |
⊢ 𝐵 ∈ V |
3 |
|
vex |
⊢ 𝑢 ∈ V |
4 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑢 → ( 𝑧 = 𝐵 ↔ 𝑢 = 𝐵 ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑧 = 𝑢 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) ) |
6 |
3 5
|
elab |
⊢ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) |
7 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) |
9 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 |
10 |
9
|
nfab |
⊢ Ⅎ 𝑥 { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
11 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) |
12 |
10 11
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) |
13 |
8 12
|
nfan |
⊢ Ⅎ 𝑥 ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
14 |
|
f1eq1 |
⊢ ( 𝑢 = 𝐵 → ( 𝑢 : 𝐷 –1-1→ 𝑆 ↔ 𝐵 : 𝐷 –1-1→ 𝑆 ) ) |
15 |
14
|
biimparc |
⊢ ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ 𝑢 = 𝐵 ) → 𝑢 : 𝐷 –1-1→ 𝑆 ) |
16 |
|
df-f1 |
⊢ ( 𝑢 : 𝐷 –1-1→ 𝑆 ↔ ( 𝑢 : 𝐷 ⟶ 𝑆 ∧ Fun ◡ 𝑢 ) ) |
17 |
|
ffun |
⊢ ( 𝑢 : 𝐷 ⟶ 𝑆 → Fun 𝑢 ) |
18 |
17
|
anim1i |
⊢ ( ( 𝑢 : 𝐷 ⟶ 𝑆 ∧ Fun ◡ 𝑢 ) → ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ) |
19 |
16 18
|
sylbi |
⊢ ( 𝑢 : 𝐷 –1-1→ 𝑆 → ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ) |
20 |
15 19
|
syl |
⊢ ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ) |
21 |
20
|
adantlr |
⊢ ( ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ) |
22 |
|
f1f |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → 𝐵 : 𝐷 ⟶ 𝑆 ) |
23 |
1
|
fiunlem |
⊢ ( ( ( 𝐵 : 𝐷 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
24 |
22 23
|
sylanl1 |
⊢ ( ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
25 |
21 24
|
jca |
⊢ ( ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
26 |
25
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) |
27 |
13 26
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
28 |
7 27
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐴 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
29 |
6 28
|
sylan2b |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
30 |
29
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∀ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
31 |
|
fun11uni |
⊢ ( ∀ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( ( Fun 𝑢 ∧ Fun ◡ 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) → ( Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ∧ Fun ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) ) |
32 |
30 31
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ∧ Fun ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) ) |
33 |
32
|
simpld |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
34 |
2
|
dfiun2 |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
35 |
34
|
funeqi |
⊢ ( Fun ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Fun ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
36 |
33 35
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ∪ 𝑥 ∈ 𝐴 𝐵 ) |
37 |
3
|
eldm2 |
⊢ ( 𝑢 ∈ dom 𝐵 ↔ ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
38 |
|
f1dm |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → dom 𝐵 = 𝐷 ) |
39 |
38
|
eleq2d |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → ( 𝑢 ∈ dom 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
40 |
37 39
|
bitr3id |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷 ) ) |
42 |
41
|
ralrexbid |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 ∈ 𝐷 ) ) |
43 |
|
eliun |
⊢ ( 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
44 |
43
|
exbii |
⊢ ( ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑣 ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
45 |
3
|
eldm2 |
⊢ ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
46 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ↔ ∃ 𝑣 ∃ 𝑥 ∈ 𝐴 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
47 |
44 45 46
|
3bitr4i |
⊢ ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 〈 𝑢 , 𝑣 〉 ∈ 𝐵 ) |
48 |
|
eliun |
⊢ ( 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐷 ↔ ∃ 𝑥 ∈ 𝐴 𝑢 ∈ 𝐷 ) |
49 |
42 47 48
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ( 𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐷 ) ) |
50 |
49
|
eqrdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷 ) |
51 |
|
df-fn |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ↔ ( Fun ∪ 𝑥 ∈ 𝐴 𝐵 ∧ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷 ) ) |
52 |
36 50 51
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ) |
53 |
|
rniun |
⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
54 |
22
|
frnd |
⊢ ( 𝐵 : 𝐷 –1-1→ 𝑆 → ran 𝐵 ⊆ 𝑆 ) |
55 |
54
|
adantr |
⊢ ( ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ran 𝐵 ⊆ 𝑆 ) |
56 |
55
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) |
57 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ↔ ∀ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) |
58 |
56 57
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ) |
59 |
53 58
|
eqsstrid |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆 ) |
60 |
|
df-f |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪ 𝑥 ∈ 𝐴 𝐷 ∧ ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆 ) ) |
61 |
52 59 60
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ) |
62 |
32
|
simprd |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
63 |
34
|
cnveqi |
⊢ ◡ ∪ 𝑥 ∈ 𝐴 𝐵 = ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
64 |
63
|
funeqi |
⊢ ( Fun ◡ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Fun ◡ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
65 |
62 64
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → Fun ◡ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
66 |
|
df-f1 |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 –1-1→ 𝑆 ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 ⟶ 𝑆 ∧ Fun ◡ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
67 |
61 65 66
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 : 𝐷 –1-1→ 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 : ∪ 𝑥 ∈ 𝐴 𝐷 –1-1→ 𝑆 ) |