Metamath Proof Explorer


Theorem f1mo

Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion f1mo ( ( ∃* 𝑥 𝑥𝐴𝐹 : 𝐴𝐵 ) → 𝐹 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 mo0sn ( ∃* 𝑥 𝑥𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) )
2 f102g ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴𝐵 ) → 𝐹 : 𝐴1-1𝐵 )
3 vex 𝑦 ∈ V
4 f1sn2g ( ( 𝑦 ∈ V ∧ 𝐹 : { 𝑦 } ⟶ 𝐵 ) → 𝐹 : { 𝑦 } –1-1𝐵 )
5 3 4 mpan ( 𝐹 : { 𝑦 } ⟶ 𝐵𝐹 : { 𝑦 } –1-1𝐵 )
6 feq2 ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴𝐵𝐹 : { 𝑦 } ⟶ 𝐵 ) )
7 f1eq2 ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴1-1𝐵𝐹 : { 𝑦 } –1-1𝐵 ) )
8 6 7 imbi12d ( 𝐴 = { 𝑦 } → ( ( 𝐹 : 𝐴𝐵𝐹 : 𝐴1-1𝐵 ) ↔ ( 𝐹 : { 𝑦 } ⟶ 𝐵𝐹 : { 𝑦 } –1-1𝐵 ) ) )
9 5 8 mpbiri ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴𝐵𝐹 : 𝐴1-1𝐵 ) )
10 9 exlimiv ( ∃ 𝑦 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴𝐵𝐹 : 𝐴1-1𝐵 ) )
11 10 imp ( ( ∃ 𝑦 𝐴 = { 𝑦 } ∧ 𝐹 : 𝐴𝐵 ) → 𝐹 : 𝐴1-1𝐵 )
12 2 11 jaoian ( ( ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ∧ 𝐹 : 𝐴𝐵 ) → 𝐹 : 𝐴1-1𝐵 )
13 1 12 sylanb ( ( ∃* 𝑥 𝑥𝐴𝐹 : 𝐴𝐵 ) → 𝐹 : 𝐴1-1𝐵 )