| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1mpt.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 2 |  | f1mpt.2 | ⊢ ( 𝑥  =  𝑦  →  𝐶  =  𝐷 ) | 
						
							| 3 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 4 | 1 3 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑦 𝐹 | 
						
							| 6 | 4 5 | dff13f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 7 | 1 | fmpt | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ↔  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 | 7 | anbi1i | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 9 | 2 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐶  ∈  𝐵  ↔  𝐷  ∈  𝐵 ) ) | 
						
							| 10 | 9 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ↔  ∀ 𝑦  ∈  𝐴 𝐷  ∈  𝐵 ) | 
						
							| 11 |  | raaanv | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  ∈  𝐵  ∧  𝐷  ∈  𝐵 )  ↔  ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐴 𝐷  ∈  𝐵 ) ) | 
						
							| 12 | 1 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐶  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  =  𝐶 ) | 
						
							| 13 | 2 1 | fvmptg | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑦 )  =  𝐷 ) | 
						
							| 14 | 12 13 | eqeqan12d | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝐷  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  𝐶  =  𝐷 ) ) | 
						
							| 15 | 14 | an4s | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐶  ∈  𝐵  ∧  𝐷  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  𝐶  =  𝐷 ) ) | 
						
							| 16 | 15 | imbi1d | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐶  ∈  𝐵  ∧  𝐷  ∈  𝐵 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐶  ∈  𝐵  ∧  𝐷  ∈  𝐵 )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 18 | 17 | ralimdva | ⊢ ( 𝑥  ∈  𝐴  →  ( ∀ 𝑦  ∈  𝐴 ( 𝐶  ∈  𝐵  ∧  𝐷  ∈  𝐵 )  →  ∀ 𝑦  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 19 |  | ralbi | ⊢ ( ∀ 𝑦  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) )  →  ( ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 20 | 18 19 | syl6 | ⊢ ( 𝑥  ∈  𝐴  →  ( ∀ 𝑦  ∈  𝐴 ( 𝐶  ∈  𝐵  ∧  𝐷  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 21 | 20 | ralimia | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  ∈  𝐵  ∧  𝐷  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 22 |  | ralbi | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  ∈  𝐵  ∧  𝐷  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 24 | 11 23 | sylbir | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐴 𝐷  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 25 | 10 24 | sylan2b | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 26 | 25 | anidms | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 27 | 26 | pm5.32i | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) | 
						
							| 28 | 6 8 27 | 3bitr2i | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) ) |