Metamath Proof Explorer


Theorem f1mptrn

Description: Express injection for a mapping operation. (Contributed by Thierry Arnoux, 3-May-2020)

Ref Expression
Hypotheses f1mptrn.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
f1mptrn.2 ( ( 𝜑𝑦𝐶 ) → ∃! 𝑥𝐴 𝑦 = 𝐵 )
Assertion f1mptrn ( 𝜑 → Fun ( 𝑥𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 f1mptrn.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
2 f1mptrn.2 ( ( 𝜑𝑦𝐶 ) → ∃! 𝑥𝐴 𝑦 = 𝐵 )
3 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
4 2 ralrimiva ( 𝜑 → ∀ 𝑦𝐶 ∃! 𝑥𝐴 𝑦 = 𝐵 )
5 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
6 5 f1ompt ( ( 𝑥𝐴𝐵 ) : 𝐴1-1-onto𝐶 ↔ ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ∀ 𝑦𝐶 ∃! 𝑥𝐴 𝑦 = 𝐵 ) )
7 dff1o2 ( ( 𝑥𝐴𝐵 ) : 𝐴1-1-onto𝐶 ↔ ( ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ Fun ( 𝑥𝐴𝐵 ) ∧ ran ( 𝑥𝐴𝐵 ) = 𝐶 ) )
8 7 simp2bi ( ( 𝑥𝐴𝐵 ) : 𝐴1-1-onto𝐶 → Fun ( 𝑥𝐴𝐵 ) )
9 6 8 sylbir ( ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ∀ 𝑦𝐶 ∃! 𝑥𝐴 𝑦 = 𝐵 ) → Fun ( 𝑥𝐴𝐵 ) )
10 3 4 9 syl2anc ( 𝜑 → Fun ( 𝑥𝐴𝐵 ) )