| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1od.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 2 |
|
f1o2d.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 3 |
|
f1o2d.3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝐴 ) |
| 4 |
|
f1o2d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) |
| 5 |
|
eleq1a |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝑦 = 𝐶 → 𝑦 ∈ 𝐵 ) ) |
| 6 |
2 5
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝐶 → 𝑦 ∈ 𝐵 ) ) |
| 7 |
6
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → 𝑦 ∈ 𝐵 ) |
| 8 |
4
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝐷 ) |
| 9 |
8
|
exp42 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑦 = 𝐶 → 𝑥 = 𝐷 ) ) ) ) |
| 10 |
9
|
com34 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐷 ) ) ) ) |
| 11 |
10
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐷 ) ) |
| 12 |
7 11
|
jcai |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) |
| 13 |
|
eleq1a |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 = 𝐷 → 𝑥 ∈ 𝐴 ) ) |
| 14 |
3 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 → 𝑥 ∈ 𝐴 ) ) |
| 15 |
14
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → 𝑥 ∈ 𝐴 ) |
| 16 |
4
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑥 = 𝐷 ) → 𝑦 = 𝐶 ) |
| 17 |
16
|
exp42 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐷 → 𝑦 = 𝐶 ) ) ) ) |
| 18 |
17
|
com23 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝐷 → 𝑦 = 𝐶 ) ) ) ) |
| 19 |
18
|
com34 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐷 → ( 𝑥 ∈ 𝐴 → 𝑦 = 𝐶 ) ) ) ) |
| 20 |
19
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → ( 𝑥 ∈ 𝐴 → 𝑦 = 𝐶 ) ) |
| 21 |
15 20
|
jcai |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) |
| 22 |
12 21
|
impbida |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) ) |
| 23 |
1 2 3 22
|
f1ocnvd |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) ) |