Metamath Proof Explorer


Theorem f1ocnvb

Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003)

Ref Expression
Assertion f1ocnvb ( Rel 𝐹 → ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 ) )

Proof

Step Hyp Ref Expression
1 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 )
2 f1ocnv ( 𝐹 : 𝐵1-1-onto𝐴 𝐹 : 𝐴1-1-onto𝐵 )
3 dfrel2 ( Rel 𝐹 𝐹 = 𝐹 )
4 f1oeq1 ( 𝐹 = 𝐹 → ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1-onto𝐵 ) )
5 3 4 sylbi ( Rel 𝐹 → ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1-onto𝐵 ) )
6 2 5 syl5ib ( Rel 𝐹 → ( 𝐹 : 𝐵1-1-onto𝐴𝐹 : 𝐴1-1-onto𝐵 ) )
7 1 6 impbid2 ( Rel 𝐹 → ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 ) )