Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvb | ⊢ ( Rel 𝐹 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 2 | f1ocnv | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 4 | f1oeq1 | ⊢ ( ◡ ◡ 𝐹 = 𝐹 → ( ◡ ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 5 | 3 4 | sylbi | ⊢ ( Rel 𝐹 → ( ◡ ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 6 | 2 5 | imbitrid | ⊢ ( Rel 𝐹 → ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 7 | 1 6 | impbid2 | ⊢ ( Rel 𝐹 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) ) |