| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1od.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 2 |
|
f1od.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
| 3 |
|
f1od.3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝑋 ) |
| 4 |
|
f1od.4 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) ) |
| 5 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑊 ) |
| 6 |
1
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑊 → 𝐹 Fn 𝐴 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 8 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝑋 ) |
| 9 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) |
| 10 |
9
|
fnmpt |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝑋 → ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
| 11 |
8 10
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
| 12 |
4
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) } ) |
| 13 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 14 |
1 13
|
eqtri |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 15 |
14
|
cnveqi |
⊢ ◡ 𝐹 = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 16 |
|
cnvopab |
⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 17 |
15 16
|
eqtri |
⊢ ◡ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 18 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) } |
| 19 |
12 17 18
|
3eqtr4g |
⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) |
| 20 |
19
|
fneq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 Fn 𝐵 ↔ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) ) |
| 21 |
11 20
|
mpbird |
⊢ ( 𝜑 → ◡ 𝐹 Fn 𝐵 ) |
| 22 |
|
dff1o4 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ◡ 𝐹 Fn 𝐵 ) ) |
| 23 |
7 21 22
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 24 |
23 19
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) ) |