Metamath Proof Explorer


Theorem f1ocnvdm

Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006)

Ref Expression
Assertion f1ocnvdm ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐵 ) → ( 𝐹𝐶 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 )
2 f1of ( 𝐹 : 𝐵1-1-onto𝐴 𝐹 : 𝐵𝐴 )
3 1 2 syl ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵𝐴 )
4 3 ffvelrnda ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐵 ) → ( 𝐹𝐶 ) ∈ 𝐴 )