Metamath Proof Explorer


Theorem f1ocnvfv1

Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004)

Ref Expression
Assertion f1ocnvfv1 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴 ) → ( 𝐹 ‘ ( 𝐹𝐶 ) ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 f1ococnv1 ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐹𝐹 ) = ( I ↾ 𝐴 ) )
2 1 fveq1d ( 𝐹 : 𝐴1-1-onto𝐵 → ( ( 𝐹𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐴 ) ‘ 𝐶 ) )
3 2 adantr ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴 ) → ( ( 𝐹𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐴 ) ‘ 𝐶 ) )
4 f1of ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴𝐵 )
5 fvco3 ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ( ( 𝐹𝐹 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐹𝐶 ) ) )
6 4 5 sylan ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴 ) → ( ( 𝐹𝐹 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐹𝐶 ) ) )
7 fvresi ( 𝐶𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝐶 ) = 𝐶 )
8 7 adantl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝐶 ) = 𝐶 )
9 3 6 8 3eqtr3d ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴 ) → ( 𝐹 ‘ ( 𝐹𝐶 ) ) = 𝐶 )