Step |
Hyp |
Ref |
Expression |
1 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ( ◡ 𝐹 ∘ 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐴 ) ‘ 𝐶 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐴 ) ‘ 𝐶 ) ) |
4 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
5 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ‘ 𝐶 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ‘ 𝐶 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
7 |
|
fvresi |
⊢ ( 𝐶 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝐶 ) = 𝐶 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝐶 ) = 𝐶 ) |
9 |
3 6 8
|
3eqtr3d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |