Metamath Proof Explorer


Theorem f1ocnvfv2

Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004)

Ref Expression
Assertion f1ocnvfv2 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐵 ) → ( 𝐹 ‘ ( 𝐹𝐶 ) ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 f1ococnv2 ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐹 𝐹 ) = ( I ↾ 𝐵 ) )
2 1 fveq1d ( 𝐹 : 𝐴1-1-onto𝐵 → ( ( 𝐹 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐵 ) ‘ 𝐶 ) )
3 2 adantr ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐵 ) → ( ( 𝐹 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐵 ) ‘ 𝐶 ) )
4 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 )
5 f1of ( 𝐹 : 𝐵1-1-onto𝐴 𝐹 : 𝐵𝐴 )
6 4 5 syl ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵𝐴 )
7 fvco3 ( ( 𝐹 : 𝐵𝐴𝐶𝐵 ) → ( ( 𝐹 𝐹 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐹𝐶 ) ) )
8 6 7 sylan ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐵 ) → ( ( 𝐹 𝐹 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐹𝐶 ) ) )
9 fvresi ( 𝐶𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝐶 ) = 𝐶 )
10 9 adantl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝐶 ) = 𝐶 )
11 3 8 10 3eqtr3d ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐵 ) → ( 𝐹 ‘ ( 𝐹𝐶 ) ) = 𝐶 )