Step |
Hyp |
Ref |
Expression |
1 |
|
f1ococnv2 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐵 ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝐹 ∘ ◡ 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐵 ) ‘ 𝐶 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∘ ◡ 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐵 ) ‘ 𝐶 ) ) |
4 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
5 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
6 |
4 5
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
7 |
|
fvco3 |
⊢ ( ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∘ ◡ 𝐹 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∘ ◡ 𝐹 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) ) |
9 |
|
fvresi |
⊢ ( 𝐶 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝐶 ) = 𝐶 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝐶 ) = 𝐶 ) |
11 |
3 8 10
|
3eqtr3d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |