Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝐶 ) ∈ 𝐴 ) |
2 |
|
f1ocnvfvb |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) |
3 |
2
|
3expa |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) |
4 |
3
|
an32s |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) |
5 |
|
eqcom |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐶 ) ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) |
6 |
4 5
|
bitr4di |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ 𝑥 = ( ◡ 𝐹 ‘ 𝐶 ) ) ) |
7 |
1 6
|
riota5 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ℩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ) = ( ◡ 𝐹 ‘ 𝐶 ) ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝐶 ) = ( ℩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ) ) |