| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ocnvdm | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  →  ( ◡ 𝐹 ‘ 𝐶 )  ∈  𝐴 ) | 
						
							| 2 |  | f1ocnvfvb | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑥  ∈  𝐴  ∧  𝐶  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝐶  ↔  ( ◡ 𝐹 ‘ 𝐶 )  =  𝑥 ) ) | 
						
							| 3 | 2 | 3expa | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑥  ∈  𝐴 )  ∧  𝐶  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝐶  ↔  ( ◡ 𝐹 ‘ 𝐶 )  =  𝑥 ) ) | 
						
							| 4 | 3 | an32s | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝐶  ↔  ( ◡ 𝐹 ‘ 𝐶 )  =  𝑥 ) ) | 
						
							| 5 |  | eqcom | ⊢ ( 𝑥  =  ( ◡ 𝐹 ‘ 𝐶 )  ↔  ( ◡ 𝐹 ‘ 𝐶 )  =  𝑥 ) | 
						
							| 6 | 4 5 | bitr4di | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝐶  ↔  𝑥  =  ( ◡ 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 7 | 1 6 | riota5 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  →  ( ℩ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝐶 )  =  ( ◡ 𝐹 ‘ 𝐶 ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  →  ( ◡ 𝐹 ‘ 𝐶 )  =  ( ℩ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝐶 ) ) |