Metamath Proof Explorer


Theorem f1ocnvfvb

Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004)

Ref Expression
Assertion f1ocnvfvb ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( 𝐹𝐶 ) = 𝐷 ↔ ( 𝐹𝐷 ) = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 f1ocnvfv ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴 ) → ( ( 𝐹𝐶 ) = 𝐷 → ( 𝐹𝐷 ) = 𝐶 ) )
2 1 3adant3 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( 𝐹𝐶 ) = 𝐷 → ( 𝐹𝐷 ) = 𝐶 ) )
3 fveq2 ( 𝐶 = ( 𝐹𝐷 ) → ( 𝐹𝐶 ) = ( 𝐹 ‘ ( 𝐹𝐷 ) ) )
4 3 eqcoms ( ( 𝐹𝐷 ) = 𝐶 → ( 𝐹𝐶 ) = ( 𝐹 ‘ ( 𝐹𝐷 ) ) )
5 f1ocnvfv2 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐷𝐵 ) → ( 𝐹 ‘ ( 𝐹𝐷 ) ) = 𝐷 )
6 5 eqeq2d ( ( 𝐹 : 𝐴1-1-onto𝐵𝐷𝐵 ) → ( ( 𝐹𝐶 ) = ( 𝐹 ‘ ( 𝐹𝐷 ) ) ↔ ( 𝐹𝐶 ) = 𝐷 ) )
7 4 6 syl5ib ( ( 𝐹 : 𝐴1-1-onto𝐵𝐷𝐵 ) → ( ( 𝐹𝐷 ) = 𝐶 → ( 𝐹𝐶 ) = 𝐷 ) )
8 7 3adant2 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( 𝐹𝐷 ) = 𝐶 → ( 𝐹𝐶 ) = 𝐷 ) )
9 2 8 impbid ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( 𝐹𝐶 ) = 𝐷 ↔ ( 𝐹𝐷 ) = 𝐶 ) )