| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1of1 | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷  →  𝐺 : 𝐶 –1-1→ 𝐷 ) | 
						
							| 2 | 1 | anim1i | ⊢ ( ( 𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐺 : 𝐶 –1-1→ 𝐷  ∧  𝐵  ⊆  𝐶 ) ) | 
						
							| 3 | 2 | 3adant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐺 : 𝐶 –1-1→ 𝐷  ∧  𝐵  ⊆  𝐶 ) ) | 
						
							| 4 |  | f1ores | ⊢ ( ( 𝐺 : 𝐶 –1-1→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐺  ↾  𝐵 ) : 𝐵 –1-1-onto→ ( 𝐺  “  𝐵 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐺  ↾  𝐵 ) : 𝐵 –1-1-onto→ ( 𝐺  “  𝐵 ) ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 7 |  | f1oco | ⊢ ( ( ( 𝐺  ↾  𝐵 ) : 𝐵 –1-1-onto→ ( 𝐺  “  𝐵 )  ∧  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  →  ( ( 𝐺  ↾  𝐵 )  ∘  𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺  “  𝐵 ) ) | 
						
							| 8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ( ( 𝐺  ↾  𝐵 )  ∘  𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺  “  𝐵 ) ) | 
						
							| 9 |  | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 10 |  | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  ran  𝐹  =  𝐵 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ran  𝐹  =  𝐵 ) | 
						
							| 12 | 11 | eqimssd | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ran  𝐹  ⊆  𝐵 ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ran  𝐹  ⊆  𝐵 ) | 
						
							| 14 |  | cores | ⊢ ( ran  𝐹  ⊆  𝐵  →  ( ( 𝐺  ↾  𝐵 )  ∘  𝐹 )  =  ( 𝐺  ∘  𝐹 ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( ran  𝐹  ⊆  𝐵  →  ( 𝐺  ∘  𝐹 )  =  ( ( 𝐺  ↾  𝐵 )  ∘  𝐹 ) ) | 
						
							| 16 | 13 15 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐺  ∘  𝐹 )  =  ( ( 𝐺  ↾  𝐵 )  ∘  𝐹 ) ) | 
						
							| 17 | 16 | f1oeq1d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ( ( 𝐺  ∘  𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺  “  𝐵 )  ↔  ( ( 𝐺  ↾  𝐵 )  ∘  𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺  “  𝐵 ) ) ) | 
						
							| 18 | 8 17 | mpbird | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐺 : 𝐶 –1-1-onto→ 𝐷  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐺  ∘  𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺  “  𝐵 ) ) |