Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocpbl.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝑋 ) |
2 |
1
|
f1ocpbllem |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
3 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
4 |
3
|
fveq2d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( 𝐹 ‘ ( 𝐶 + 𝐷 ) ) ) |
5 |
2 4
|
biimtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( 𝐹 ‘ ( 𝐶 + 𝐷 ) ) ) ) |