Metamath Proof Explorer


Theorem f1oen

Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998)

Ref Expression
Hypothesis f1oen.1 𝐴 ∈ V
Assertion f1oen ( 𝐹 : 𝐴1-1-onto𝐵𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 f1oen.1 𝐴 ∈ V
2 f1oeng ( ( 𝐴 ∈ V ∧ 𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )
3 1 2 mpan ( 𝐹 : 𝐴1-1-onto𝐵𝐴𝐵 )