Metamath Proof Explorer


Theorem f1oeq1

Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1oeq1 ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴1-1-onto𝐵𝐺 : 𝐴1-1-onto𝐵 ) )

Proof

Step Hyp Ref Expression
1 f1eq1 ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴1-1𝐵𝐺 : 𝐴1-1𝐵 ) )
2 foeq1 ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐴onto𝐵 ) )
3 1 2 anbi12d ( 𝐹 = 𝐺 → ( ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴onto𝐵 ) ↔ ( 𝐺 : 𝐴1-1𝐵𝐺 : 𝐴onto𝐵 ) ) )
4 df-f1o ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴onto𝐵 ) )
5 df-f1o ( 𝐺 : 𝐴1-1-onto𝐵 ↔ ( 𝐺 : 𝐴1-1𝐵𝐺 : 𝐴onto𝐵 ) )
6 3 4 5 3bitr4g ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴1-1-onto𝐵𝐺 : 𝐴1-1-onto𝐵 ) )