Step |
Hyp |
Ref |
Expression |
1 |
|
f1eq123d.1 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
2 |
|
f1eq123d.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
3 |
|
f1eq123d.3 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
4 |
|
f1oeq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐺 : 𝐴 –1-1-onto→ 𝐶 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐺 : 𝐴 –1-1-onto→ 𝐶 ) ) |
6 |
|
f1oeq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐺 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐺 : 𝐵 –1-1-onto→ 𝐶 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝐺 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐺 : 𝐵 –1-1-onto→ 𝐶 ) ) |
8 |
|
f1oeq3 |
⊢ ( 𝐶 = 𝐷 → ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ↔ 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ↔ 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) ) |
10 |
5 7 9
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) ) |