Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | f1oeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐹 : 𝐵 –1-1→ 𝐶 ) ) | |
2 | foeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –onto→ 𝐶 ↔ 𝐹 : 𝐵 –onto→ 𝐶 ) ) | |
3 | 1 2 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐹 : 𝐴 –onto→ 𝐶 ) ↔ ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ) ) |
4 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐹 : 𝐴 –onto→ 𝐶 ) ) | |
5 | df-f1o | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |