Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐹 : 𝐵 –1-1→ 𝐶 ) ) | |
| 2 | foeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –onto→ 𝐶 ↔ 𝐹 : 𝐵 –onto→ 𝐶 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐹 : 𝐴 –onto→ 𝐶 ) ↔ ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ) ) |
| 4 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐹 : 𝐴 –onto→ 𝐶 ) ) | |
| 5 | df-f1o | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |