Metamath Proof Explorer


Theorem f1oeq2d

Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis f1oeq2d.1 ( 𝜑𝐴 = 𝐵 )
Assertion f1oeq2d ( 𝜑 → ( 𝐹 : 𝐴1-1-onto𝐶𝐹 : 𝐵1-1-onto𝐶 ) )

Proof

Step Hyp Ref Expression
1 f1oeq2d.1 ( 𝜑𝐴 = 𝐵 )
2 f1oeq2 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴1-1-onto𝐶𝐹 : 𝐵1-1-onto𝐶 ) )
3 1 2 syl ( 𝜑 → ( 𝐹 : 𝐴1-1-onto𝐶𝐹 : 𝐵1-1-onto𝐶 ) )