Metamath Proof Explorer


Theorem f1oeq3

Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1oeq3 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶1-1-onto𝐵 ) )

Proof

Step Hyp Ref Expression
1 f1eq3 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶1-1𝐴𝐹 : 𝐶1-1𝐵 ) )
2 foeq3 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶onto𝐴𝐹 : 𝐶onto𝐵 ) )
3 1 2 anbi12d ( 𝐴 = 𝐵 → ( ( 𝐹 : 𝐶1-1𝐴𝐹 : 𝐶onto𝐴 ) ↔ ( 𝐹 : 𝐶1-1𝐵𝐹 : 𝐶onto𝐵 ) ) )
4 df-f1o ( 𝐹 : 𝐶1-1-onto𝐴 ↔ ( 𝐹 : 𝐶1-1𝐴𝐹 : 𝐶onto𝐴 ) )
5 df-f1o ( 𝐹 : 𝐶1-1-onto𝐵 ↔ ( 𝐹 : 𝐶1-1𝐵𝐹 : 𝐶onto𝐵 ) )
6 3 4 5 3bitr4g ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶1-1-onto𝐵 ) )