Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oeq3 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 ↔ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq3 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶 –1-1→ 𝐴 ↔ 𝐹 : 𝐶 –1-1→ 𝐵 ) ) | |
| 2 | foeq3 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶 –onto→ 𝐴 ↔ 𝐹 : 𝐶 –onto→ 𝐵 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐹 : 𝐶 –1-1→ 𝐴 ∧ 𝐹 : 𝐶 –onto→ 𝐴 ) ↔ ( 𝐹 : 𝐶 –1-1→ 𝐵 ∧ 𝐹 : 𝐶 –onto→ 𝐵 ) ) ) |
| 4 | df-f1o | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 ↔ ( 𝐹 : 𝐶 –1-1→ 𝐴 ∧ 𝐹 : 𝐶 –onto→ 𝐴 ) ) | |
| 5 | df-f1o | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐶 –1-1→ 𝐵 ∧ 𝐹 : 𝐶 –onto→ 𝐵 ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 ↔ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) ) |