Metamath Proof Explorer


Theorem f1oeq3d

Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis f1oeq3d.1 ( 𝜑𝐴 = 𝐵 )
Assertion f1oeq3d ( 𝜑 → ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶1-1-onto𝐵 ) )

Proof

Step Hyp Ref Expression
1 f1oeq3d.1 ( 𝜑𝐴 = 𝐵 )
2 f1oeq3 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶1-1-onto𝐵 ) )
3 1 2 syl ( 𝜑 → ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶1-1-onto𝐵 ) )