| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 2 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
| 3 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 4 |
1 2 3
|
3syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 5 |
|
fex |
⊢ ( ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ◡ 𝐹 ∈ V ) |
| 6 |
4 5
|
sylancom |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ◡ 𝐹 ∈ V ) |
| 7 |
|
f1orel |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → Rel 𝐹 ) |
| 9 |
|
relcnvexb |
⊢ ( Rel 𝐹 → ( 𝐹 ∈ V ↔ ◡ 𝐹 ∈ V ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ∈ V ↔ ◡ 𝐹 ∈ V ) ) |
| 11 |
6 10
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 ∈ V ) |