Metamath Proof Explorer


Theorem f1oexrnex

Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019)

Ref Expression
Assertion f1oexrnex ( ( 𝐹 : 𝐴1-1-onto𝐵𝐵𝑉 ) → 𝐹 ∈ V )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐵𝑉 ) → 𝐹 : 𝐴1-1-onto𝐵 )
2 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 )
3 f1of ( 𝐹 : 𝐵1-1-onto𝐴 𝐹 : 𝐵𝐴 )
4 1 2 3 3syl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐵𝑉 ) → 𝐹 : 𝐵𝐴 )
5 fex ( ( 𝐹 : 𝐵𝐴𝐵𝑉 ) → 𝐹 ∈ V )
6 4 5 sylancom ( ( 𝐹 : 𝐴1-1-onto𝐵𝐵𝑉 ) → 𝐹 ∈ V )
7 f1orel ( 𝐹 : 𝐴1-1-onto𝐵 → Rel 𝐹 )
8 7 adantr ( ( 𝐹 : 𝐴1-1-onto𝐵𝐵𝑉 ) → Rel 𝐹 )
9 relcnvexb ( Rel 𝐹 → ( 𝐹 ∈ V ↔ 𝐹 ∈ V ) )
10 8 9 syl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐵𝑉 ) → ( 𝐹 ∈ V ↔ 𝐹 ∈ V ) )
11 6 10 mpbird ( ( 𝐹 : 𝐴1-1-onto𝐵𝐵𝑉 ) → 𝐹 ∈ V )