Metamath Proof Explorer


Theorem f1of

Description: A one-to-one onto mapping is a mapping. (Contributed by NM, 12-Dec-2003)

Ref Expression
Assertion f1of ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 f1of1 ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1𝐵 )
2 f1f ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴𝐵 )
3 1 2 syl ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴𝐵 )