Metamath Proof Explorer


Theorem f1ofun

Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003)

Ref Expression
Assertion f1ofun ( 𝐹 : 𝐴1-1-onto𝐵 → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 f1ofn ( 𝐹 : 𝐴1-1-onto𝐵𝐹 Fn 𝐴 )
2 fnfun ( 𝐹 Fn 𝐴 → Fun 𝐹 )
3 1 2 syl ( 𝐹 : 𝐴1-1-onto𝐵 → Fun 𝐹 )