Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
2 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
4 |
|
feu |
⊢ ( ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) |
6 |
|
f1ocnvfvb |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) |
7 |
6
|
3com23 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) |
8 |
|
dff1o4 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ◡ 𝐹 Fn 𝐵 ) ) |
9 |
8
|
simprbi |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 Fn 𝐵 ) |
10 |
|
fnopfvb |
⊢ ( ( ◡ 𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
11 |
10
|
3adant3 |
⊢ ( ( ◡ 𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
12 |
9 11
|
syl3an1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
13 |
7 12
|
bitrd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
14 |
13
|
3expa |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
15 |
14
|
reubidva |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ∃! 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
16 |
5 15
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |