Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
f1of1 |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –1-1→ 𝐵 ) |
3 |
|
df-br |
⊢ ( ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ↔ 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ 𝑆 ) |
4 |
|
eleq2 |
⊢ ( 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } → ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ 𝑆 ↔ 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) ) |
5 |
|
fvex |
⊢ ( 𝐻 ‘ 𝑣 ) ∈ V |
6 |
|
fvex |
⊢ ( 𝐻 ‘ 𝑢 ) ∈ V |
7 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑣 ) → ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ↔ ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
8 |
7
|
anbi1d |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑣 ) → ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ↔ ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ) ) |
9 |
8
|
anbi1d |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑣 ) → ( ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
10 |
9
|
2rexbidv |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑣 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑤 = ( 𝐻 ‘ 𝑢 ) → ( 𝑤 = ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑤 = ( 𝐻 ‘ 𝑢 ) → ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ↔ ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝑤 = ( 𝐻 ‘ 𝑢 ) → ( ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
14 |
13
|
2rexbidv |
⊢ ( 𝑤 = ( 𝐻 ‘ 𝑢 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
15 |
5 6 10 14
|
opelopab |
⊢ ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) |
16 |
|
anass |
⊢ ( ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
17 |
|
f1fveq |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ↔ 𝑣 = 𝑥 ) ) |
18 |
|
equcom |
⊢ ( 𝑣 = 𝑥 ↔ 𝑥 = 𝑣 ) |
19 |
17 18
|
bitrdi |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ↔ 𝑥 = 𝑣 ) ) |
20 |
19
|
anassrs |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ↔ 𝑥 = 𝑣 ) ) |
21 |
20
|
anbi1d |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ↔ ( 𝑥 = 𝑣 ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
22 |
16 21
|
bitrid |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑣 ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
23 |
22
|
rexbidv |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
24 |
|
r19.42v |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ↔ ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
25 |
23 24
|
bitrdi |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
26 |
25
|
rexbidva |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
27 |
|
breq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 𝑅 𝑦 ↔ 𝑣 𝑅 𝑦 ) ) |
28 |
27
|
anbi2d |
⊢ ( 𝑥 = 𝑣 → ( ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
29 |
28
|
rexbidv |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
30 |
29
|
ceqsrexv |
⊢ ( 𝑣 ∈ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
32 |
26 31
|
bitrd |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
33 |
|
f1fveq |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ↔ 𝑢 = 𝑦 ) ) |
34 |
|
equcom |
⊢ ( 𝑢 = 𝑦 ↔ 𝑦 = 𝑢 ) |
35 |
33 34
|
bitrdi |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ↔ 𝑦 = 𝑢 ) ) |
36 |
35
|
anassrs |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ↔ 𝑦 = 𝑢 ) ) |
37 |
36
|
anbi1d |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ↔ ( 𝑦 = 𝑢 ∧ 𝑣 𝑅 𝑦 ) ) ) |
38 |
37
|
rexbidva |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑢 ∧ 𝑣 𝑅 𝑦 ) ) ) |
39 |
|
breq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝑣 𝑅 𝑦 ↔ 𝑣 𝑅 𝑢 ) ) |
40 |
39
|
ceqsrexv |
⊢ ( 𝑢 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑢 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑢 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
42 |
38 41
|
bitrd |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
43 |
32 42
|
sylan9bb |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
44 |
43
|
anandis |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
45 |
15 44
|
bitrid |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ↔ 𝑣 𝑅 𝑢 ) ) |
46 |
4 45
|
sylan9bbr |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ 𝑆 ↔ 𝑣 𝑅 𝑢 ) ) |
47 |
46
|
an32s |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ 𝑆 ↔ 𝑣 𝑅 𝑢 ) ) |
48 |
3 47
|
bitr2id |
⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 𝑣 𝑅 𝑢 ↔ ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ) ) |
49 |
48
|
ralrimivva |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 𝑅 𝑢 ↔ ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ) ) |
50 |
2 49
|
sylan |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 𝑅 𝑢 ↔ ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ) ) |
51 |
|
df-isom |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 𝑅 𝑢 ↔ ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ) ) ) |
52 |
1 50 51
|
sylanbrc |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |