Step |
Hyp |
Ref |
Expression |
1 |
|
f1oiso2.1 |
⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) } |
2 |
|
f1ocnvdm |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
3 |
2
|
adantrr |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
5 |
|
f1ocnvdm |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ◡ 𝐻 ‘ 𝑦 ) ∈ 𝐴 ) |
6 |
5
|
adantrl |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ 𝐻 ‘ 𝑦 ) ∈ 𝐴 ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ( ◡ 𝐻 ‘ 𝑦 ) ∈ 𝐴 ) |
8 |
|
f1ocnvfv2 |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) = 𝑥 ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) |
10 |
|
f1ocnvfv2 |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) = 𝑦 ) |
11 |
10
|
eqcomd |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) |
12 |
9 11
|
anim12dan |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
14 |
|
simp3 |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( 𝐻 ‘ 𝑤 ) = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( 𝑦 = ( 𝐻 ‘ 𝑤 ) ↔ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ↔ ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) ) |
18 |
|
breq2 |
⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ↔ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) |
19 |
17 18
|
anbi12d |
⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ↔ ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
20 |
19
|
rspcev |
⊢ ( ( ( ◡ 𝐻 ‘ 𝑦 ) ∈ 𝐴 ∧ ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) → ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) |
21 |
7 13 14 20
|
syl12anc |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ↔ 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) ) |
24 |
23
|
anbi1d |
⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ↔ ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ) ) |
25 |
|
breq1 |
⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( 𝑧 𝑅 𝑤 ↔ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) |
26 |
24 25
|
anbi12d |
⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ↔ ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) ) |
28 |
27
|
rspcev |
⊢ ( ( ( ◡ 𝐻 ‘ 𝑥 ) ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) |
29 |
4 21 28
|
syl2anc |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) |
30 |
29
|
3expib |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) ) |
31 |
|
simp3ll |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑥 = ( 𝐻 ‘ 𝑧 ) ) |
32 |
|
simp1 |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
33 |
|
simp2l |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑧 ∈ 𝐴 ) |
34 |
|
f1of |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
35 |
34
|
ffvelrnda |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑧 ) ∈ 𝐵 ) |
36 |
32 33 35
|
syl2anc |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( 𝐻 ‘ 𝑧 ) ∈ 𝐵 ) |
37 |
31 36
|
eqeltrd |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑥 ∈ 𝐵 ) |
38 |
|
simp3lr |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑦 = ( 𝐻 ‘ 𝑤 ) ) |
39 |
|
simp2r |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑤 ∈ 𝐴 ) |
40 |
34
|
ffvelrnda |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝐵 ) |
41 |
32 39 40
|
syl2anc |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝐵 ) |
42 |
38 41
|
eqeltrd |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑦 ∈ 𝐵 ) |
43 |
|
simp3r |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑧 𝑅 𝑤 ) |
44 |
31
|
eqcomd |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( 𝐻 ‘ 𝑧 ) = 𝑥 ) |
45 |
|
f1ocnvfv |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) = 𝑥 → ( ◡ 𝐻 ‘ 𝑥 ) = 𝑧 ) ) |
46 |
32 33 45
|
syl2anc |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ( 𝐻 ‘ 𝑧 ) = 𝑥 → ( ◡ 𝐻 ‘ 𝑥 ) = 𝑧 ) ) |
47 |
44 46
|
mpd |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) = 𝑧 ) |
48 |
38
|
eqcomd |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( 𝐻 ‘ 𝑤 ) = 𝑦 ) |
49 |
|
f1ocnvfv |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑤 ) = 𝑦 → ( ◡ 𝐻 ‘ 𝑦 ) = 𝑤 ) ) |
50 |
32 39 49
|
syl2anc |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ( 𝐻 ‘ 𝑤 ) = 𝑦 → ( ◡ 𝐻 ‘ 𝑦 ) = 𝑤 ) ) |
51 |
48 50
|
mpd |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ◡ 𝐻 ‘ 𝑦 ) = 𝑤 ) |
52 |
43 47 51
|
3brtr4d |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) |
53 |
37 42 52
|
jca31 |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) |
54 |
53
|
3exp |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) ) |
55 |
54
|
rexlimdvv |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
56 |
30 55
|
impbid |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) ) |
57 |
56
|
opabbidv |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) } ) |
58 |
1 57
|
eqtrid |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) } ) |
59 |
|
f1oiso |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) } ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
60 |
58 59
|
mpdan |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |