Step |
Hyp |
Ref |
Expression |
1 |
|
f1omo.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝐴 × { 1o } ) ) |
2 |
|
1oex |
⊢ 1o ∈ V |
3 |
|
eqid |
⊢ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) |
4 |
2 3
|
fvconst0ci |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) |
5 |
|
mo0 |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
6 |
|
el1o |
⊢ ( 𝑦 ∈ 1o ↔ 𝑦 = ∅ ) |
7 |
|
el1o |
⊢ ( 𝑥 ∈ 1o ↔ 𝑥 = ∅ ) |
8 |
|
eqtr3 |
⊢ ( ( 𝑦 = ∅ ∧ 𝑥 = ∅ ) → 𝑦 = 𝑥 ) |
9 |
6 7 8
|
syl2anb |
⊢ ( ( 𝑦 ∈ 1o ∧ 𝑥 ∈ 1o ) → 𝑦 = 𝑥 ) |
10 |
9
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 1o ∧ 𝑥 ∈ 1o ) → 𝑦 = 𝑥 ) |
11 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 1o ↔ 𝑥 ∈ 1o ) ) |
12 |
11
|
mo4 |
⊢ ( ∃* 𝑦 𝑦 ∈ 1o ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 1o ∧ 𝑥 ∈ 1o ) → 𝑦 = 𝑥 ) ) |
13 |
10 12
|
mpbir |
⊢ ∃* 𝑦 𝑦 ∈ 1o |
14 |
|
eleq2w2 |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ( 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ↔ 𝑦 ∈ 1o ) ) |
15 |
14
|
mobidv |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ( ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ↔ ∃* 𝑦 𝑦 ∈ 1o ) ) |
16 |
13 15
|
mpbiri |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
17 |
5 16
|
jaoi |
⊢ ( ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
18 |
4 17
|
ax-mp |
⊢ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) |
19 |
1
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
20 |
19
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) ) |
21 |
20
|
mobidv |
⊢ ( 𝜑 → ( ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) ) |
22 |
18 21
|
mpbiri |
⊢ ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ) |