Metamath Proof Explorer


Theorem f1omoALT

Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Use f1omo without assuming ax-un . (Contributed by Zhi Wang, 18-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis f1omoALT.1 ( 𝜑𝐹 = ( 𝐴 × { 1o } ) )
Assertion f1omoALT ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 f1omoALT.1 ( 𝜑𝐹 = ( 𝐴 × { 1o } ) )
2 1 fveq1d ( 𝜑 → ( 𝐹𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) )
3 1oex 1o ∈ V
4 3 fvconstdomi ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ≼ 1o
5 2 4 eqbrtrdi ( 𝜑 → ( 𝐹𝑋 ) ≼ 1o )
6 modom2 ( ∃* 𝑦 𝑦 ∈ ( 𝐹𝑋 ) ↔ ( 𝐹𝑋 ) ≼ 1o )
7 5 6 sylibr ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹𝑋 ) )