Metamath Proof Explorer


Theorem f1omvdcnv

Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion f1omvdcnv ( 𝐹 : 𝐴1-1-onto𝐴 → dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) )

Proof

Step Hyp Ref Expression
1 f1ocnvfvb ( ( 𝐹 : 𝐴1-1-onto𝐴𝑥𝐴𝑥𝐴 ) → ( ( 𝐹𝑥 ) = 𝑥 ↔ ( 𝐹𝑥 ) = 𝑥 ) )
2 1 3anidm23 ( ( 𝐹 : 𝐴1-1-onto𝐴𝑥𝐴 ) → ( ( 𝐹𝑥 ) = 𝑥 ↔ ( 𝐹𝑥 ) = 𝑥 ) )
3 2 bicomd ( ( 𝐹 : 𝐴1-1-onto𝐴𝑥𝐴 ) → ( ( 𝐹𝑥 ) = 𝑥 ↔ ( 𝐹𝑥 ) = 𝑥 ) )
4 3 necon3bid ( ( 𝐹 : 𝐴1-1-onto𝐴𝑥𝐴 ) → ( ( 𝐹𝑥 ) ≠ 𝑥 ↔ ( 𝐹𝑥 ) ≠ 𝑥 ) )
5 4 rabbidva ( 𝐹 : 𝐴1-1-onto𝐴 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ 𝑥 } = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ 𝑥 } )
6 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐴 𝐹 : 𝐴1-1-onto𝐴 )
7 f1ofn ( 𝐹 : 𝐴1-1-onto𝐴 𝐹 Fn 𝐴 )
8 fndifnfp ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ 𝑥 } )
9 6 7 8 3syl ( 𝐹 : 𝐴1-1-onto𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ 𝑥 } )
10 f1ofn ( 𝐹 : 𝐴1-1-onto𝐴𝐹 Fn 𝐴 )
11 fndifnfp ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ 𝑥 } )
12 10 11 syl ( 𝐹 : 𝐴1-1-onto𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ 𝑥 } )
13 5 9 12 3eqtr4d ( 𝐹 : 𝐴1-1-onto𝐴 → dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) )