Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnvfvb |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
2 |
1
|
3anidm23 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
3 |
2
|
bicomd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
4 |
3
|
necon3bid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
5 |
4
|
rabbidva |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → { 𝑥 ∈ 𝐴 ∣ ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝑥 } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
6 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
7 |
|
f1ofn |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 Fn 𝐴 ) |
8 |
|
fndifnfp |
⊢ ( ◡ 𝐹 Fn 𝐴 → dom ( ◡ 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
9 |
6 7 8
|
3syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
10 |
|
f1ofn |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 Fn 𝐴 ) |
11 |
|
fndifnfp |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
12 |
10 11
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
13 |
5 9 12
|
3eqtr4d |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) ) |