Step |
Hyp |
Ref |
Expression |
1 |
|
excxor |
⊢ ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ↔ ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ∨ ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) ) |
2 |
|
coass |
⊢ ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) |
3 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
4 |
3
|
coeq1d |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ( I ↾ 𝐴 ) ∘ 𝐺 ) ) |
5 |
|
f1of |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → 𝐺 : 𝐴 ⟶ 𝐴 ) |
6 |
|
fcoi2 |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 ) |
7 |
5 6
|
syl |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 ) |
8 |
4 7
|
sylan9eq |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = 𝐺 ) |
9 |
2 8
|
eqtr3id |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) = 𝐺 ) |
10 |
9
|
difeq1d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) = ( 𝐺 ∖ I ) ) |
11 |
10
|
dmeqd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) = dom ( 𝐺 ∖ I ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) = dom ( 𝐺 ∖ I ) ) |
13 |
|
mvdco |
⊢ dom ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) ⊆ ( dom ( ◡ 𝐹 ∖ I ) ∪ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |
14 |
|
f1omvdcnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) ) |
16 |
|
simprl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) |
17 |
15 16
|
eqsstrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝐹 ∖ I ) ⊆ 𝑋 ) |
18 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |
19 |
17 18
|
unssd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → ( dom ( ◡ 𝐹 ∖ I ) ∪ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) ⊆ 𝑋 ) |
20 |
13 19
|
sstrid |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) ⊆ 𝑋 ) |
21 |
12 20
|
eqsstrrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) |
22 |
21
|
expr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 → dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) |
23 |
22
|
con3d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ( ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
24 |
23
|
expimpd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
25 |
|
coass |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) = ( 𝐹 ∘ ( 𝐺 ∘ ◡ 𝐺 ) ) |
26 |
|
f1ococnv2 |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ( 𝐺 ∘ ◡ 𝐺 ) = ( I ↾ 𝐴 ) ) |
27 |
26
|
coeq2d |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ( 𝐹 ∘ ( 𝐺 ∘ ◡ 𝐺 ) ) = ( 𝐹 ∘ ( I ↾ 𝐴 ) ) ) |
28 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 ⟶ 𝐴 ) |
29 |
|
fcoi1 |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 ) |
30 |
28 29
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 ) |
31 |
27 30
|
sylan9eqr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝐹 ∘ ( 𝐺 ∘ ◡ 𝐺 ) ) = 𝐹 ) |
32 |
25 31
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) = 𝐹 ) |
33 |
32
|
difeq1d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐹 ∖ I ) ) |
34 |
33
|
dmeqd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) = dom ( 𝐹 ∖ I ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) = dom ( 𝐹 ∖ I ) ) |
36 |
|
mvdco |
⊢ dom ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ∪ dom ( ◡ 𝐺 ∖ I ) ) |
37 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |
38 |
|
f1omvdcnv |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐺 ∖ I ) = dom ( 𝐺 ∖ I ) ) |
39 |
38
|
ad2antlr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝐺 ∖ I ) = dom ( 𝐺 ∖ I ) ) |
40 |
|
simprl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) |
41 |
39 40
|
eqsstrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝐺 ∖ I ) ⊆ 𝑋 ) |
42 |
37 41
|
unssd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ∪ dom ( ◡ 𝐺 ∖ I ) ) ⊆ 𝑋 ) |
43 |
36 42
|
sstrid |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |
44 |
35 43
|
eqsstrrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) |
45 |
44
|
expr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 → dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) ) |
46 |
45
|
con3d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
47 |
46
|
expimpd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
48 |
47
|
ancomsd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
49 |
24 48
|
jaod |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ∨ ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
50 |
1 49
|
syl5bi |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
51 |
50
|
3impia |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |