Metamath Proof Explorer


Theorem f1omvdco2

Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion f1omvdco2 ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 )

Proof

Step Hyp Ref Expression
1 excxor ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ↔ ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ∨ ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) )
2 coass ( ( 𝐹𝐹 ) ∘ 𝐺 ) = ( 𝐹 ∘ ( 𝐹𝐺 ) )
3 f1ococnv1 ( 𝐹 : 𝐴1-1-onto𝐴 → ( 𝐹𝐹 ) = ( I ↾ 𝐴 ) )
4 3 coeq1d ( 𝐹 : 𝐴1-1-onto𝐴 → ( ( 𝐹𝐹 ) ∘ 𝐺 ) = ( ( I ↾ 𝐴 ) ∘ 𝐺 ) )
5 f1of ( 𝐺 : 𝐴1-1-onto𝐴𝐺 : 𝐴𝐴 )
6 fcoi2 ( 𝐺 : 𝐴𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 )
7 5 6 syl ( 𝐺 : 𝐴1-1-onto𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 )
8 4 7 sylan9eq ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( 𝐹𝐹 ) ∘ 𝐺 ) = 𝐺 )
9 2 8 eqtr3id ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( 𝐹 ∘ ( 𝐹𝐺 ) ) = 𝐺 )
10 9 difeq1d ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( 𝐹 ∘ ( 𝐹𝐺 ) ) ∖ I ) = ( 𝐺 ∖ I ) )
11 10 dmeqd ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → dom ( ( 𝐹 ∘ ( 𝐹𝐺 ) ) ∖ I ) = dom ( 𝐺 ∖ I ) )
12 11 adantr ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝐹 ∘ ( 𝐹𝐺 ) ) ∖ I ) = dom ( 𝐺 ∖ I ) )
13 mvdco dom ( ( 𝐹 ∘ ( 𝐹𝐺 ) ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∪ dom ( ( 𝐹𝐺 ) ∖ I ) )
14 f1omvdcnv ( 𝐹 : 𝐴1-1-onto𝐴 → dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) )
15 14 ad2antrr ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) )
16 simprl ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝑋 )
17 15 16 eqsstrd ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝑋 )
18 simprr ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 )
19 17 18 unssd ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → ( dom ( 𝐹 ∖ I ) ∪ dom ( ( 𝐹𝐺 ) ∖ I ) ) ⊆ 𝑋 )
20 13 19 sstrid ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝐹 ∘ ( 𝐹𝐺 ) ) ∖ I ) ⊆ 𝑋 )
21 12 20 eqsstrrd ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐺 ∖ I ) ⊆ 𝑋 )
22 21 expr ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ( dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 → dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) )
23 22 con3d ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ( ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) )
24 23 expimpd ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) )
25 coass ( ( 𝐹𝐺 ) ∘ 𝐺 ) = ( 𝐹 ∘ ( 𝐺 𝐺 ) )
26 f1ococnv2 ( 𝐺 : 𝐴1-1-onto𝐴 → ( 𝐺 𝐺 ) = ( I ↾ 𝐴 ) )
27 26 coeq2d ( 𝐺 : 𝐴1-1-onto𝐴 → ( 𝐹 ∘ ( 𝐺 𝐺 ) ) = ( 𝐹 ∘ ( I ↾ 𝐴 ) ) )
28 f1of ( 𝐹 : 𝐴1-1-onto𝐴𝐹 : 𝐴𝐴 )
29 fcoi1 ( 𝐹 : 𝐴𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 )
30 28 29 syl ( 𝐹 : 𝐴1-1-onto𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 )
31 27 30 sylan9eqr ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( 𝐹 ∘ ( 𝐺 𝐺 ) ) = 𝐹 )
32 25 31 eqtrid ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( 𝐹𝐺 ) ∘ 𝐺 ) = 𝐹 )
33 32 difeq1d ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( ( 𝐹𝐺 ) ∘ 𝐺 ) ∖ I ) = ( 𝐹 ∖ I ) )
34 33 dmeqd ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → dom ( ( ( 𝐹𝐺 ) ∘ 𝐺 ) ∖ I ) = dom ( 𝐹 ∖ I ) )
35 34 adantr ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( 𝐹𝐺 ) ∘ 𝐺 ) ∖ I ) = dom ( 𝐹 ∖ I ) )
36 mvdco dom ( ( ( 𝐹𝐺 ) ∘ 𝐺 ) ∖ I ) ⊆ ( dom ( ( 𝐹𝐺 ) ∖ I ) ∪ dom ( 𝐺 ∖ I ) )
37 simprr ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 )
38 f1omvdcnv ( 𝐺 : 𝐴1-1-onto𝐴 → dom ( 𝐺 ∖ I ) = dom ( 𝐺 ∖ I ) )
39 38 ad2antlr ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐺 ∖ I ) = dom ( 𝐺 ∖ I ) )
40 simprl ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐺 ∖ I ) ⊆ 𝑋 )
41 39 40 eqsstrd ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐺 ∖ I ) ⊆ 𝑋 )
42 37 41 unssd ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → ( dom ( ( 𝐹𝐺 ) ∖ I ) ∪ dom ( 𝐺 ∖ I ) ) ⊆ 𝑋 )
43 36 42 sstrid ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( 𝐹𝐺 ) ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 )
44 35 43 eqsstrrd ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝑋 )
45 44 expr ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ( dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 → dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) )
46 45 con3d ( ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) )
47 46 expimpd ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) )
48 47 ancomsd ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) )
49 24 48 jaod ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ∨ ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) )
50 1 49 syl5bi ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ) → ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 ) )
51 50 3impia ( ( 𝐹 : 𝐴1-1-onto𝐴𝐺 : 𝐴1-1-onto𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) → ¬ dom ( ( 𝐹𝐺 ) ∖ I ) ⊆ 𝑋 )