Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝑋 ∈ dom ( 𝐹 ∖ I ) ) |
2 |
|
f1ofn |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 Fn 𝐴 ) |
3 |
|
difss |
⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 |
4 |
|
dmss |
⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) |
5 |
3 4
|
ax-mp |
⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
6 |
|
f1odm |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom 𝐹 = 𝐴 ) |
7 |
5 6
|
sseqtrid |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( 𝐹 ∖ I ) ⊆ 𝐴 ) |
8 |
7
|
sselda |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝑋 ∈ 𝐴 ) |
9 |
|
fnelnfp |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
10 |
2 8 9
|
syl2an2r |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
11 |
1 10
|
mpbid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) |
12 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 –1-1→ 𝐴 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝐹 : 𝐴 –1-1→ 𝐴 ) |
14 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 ⟶ 𝐴 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝐹 : 𝐴 ⟶ 𝐴 ) |
16 |
15 8
|
ffvelrnd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ) |
17 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
18 |
13 16 8 17
|
syl12anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
19 |
18
|
necon3bid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
20 |
11 19
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ ( 𝐹 ‘ 𝑋 ) ) |
21 |
|
fnelnfp |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
22 |
2 16 21
|
syl2an2r |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹 ‘ 𝑋 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
23 |
20 22
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ∈ dom ( 𝐹 ∖ I ) ) |
24 |
|
eldifsn |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑋 } ) ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ dom ( 𝐹 ∖ I ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
25 |
23 11 24
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑋 } ) ) |