Step |
Hyp |
Ref |
Expression |
1 |
|
dff13 |
⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 〈 𝑟 , 𝑠 〉 ) ) |
3 |
|
df-ov |
⊢ ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 〈 𝑟 , 𝑠 〉 ) |
4 |
2 3
|
eqtr4di |
⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( 𝐹 ‘ 𝑣 ) = ( 𝑟 𝐹 𝑠 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( 𝑣 = 𝑤 ↔ 〈 𝑟 , 𝑠 〉 = 𝑤 ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ) ) |
9 |
8
|
ralxp |
⊢ ( ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑡 , 𝑢 〉 ) ) |
11 |
|
df-ov |
⊢ ( 𝑡 𝐹 𝑢 ) = ( 𝐹 ‘ 〈 𝑡 , 𝑢 〉 ) |
12 |
10 11
|
eqtr4di |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝑡 𝐹 𝑢 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) ) ) |
14 |
|
eqeq2 |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 〈 𝑟 , 𝑠 〉 = 𝑤 ↔ 〈 𝑟 , 𝑠 〉 = 〈 𝑡 , 𝑢 〉 ) ) |
15 |
|
vex |
⊢ 𝑟 ∈ V |
16 |
|
vex |
⊢ 𝑠 ∈ V |
17 |
15 16
|
opth |
⊢ ( 〈 𝑟 , 𝑠 〉 = 〈 𝑡 , 𝑢 〉 ↔ ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) |
18 |
14 17
|
bitrdi |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 〈 𝑟 , 𝑠 〉 = 𝑤 ↔ ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
19 |
13 18
|
imbi12d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ↔ ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) ) |
20 |
19
|
ralxp |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ↔ ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
21 |
20
|
2ralbii |
⊢ ( ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ↔ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
22 |
9 21
|
bitri |
⊢ ( ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
23 |
22
|
anbi2i |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) ) |
24 |
1 23
|
bitri |
⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) ) |