Step |
Hyp |
Ref |
Expression |
1 |
|
f1opw2.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
f1opw2.2 |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ∈ V ) |
3 |
|
f1opw2.3 |
⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ∈ V ) |
4 |
|
eqid |
⊢ ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) = ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) |
5 |
|
imassrn |
⊢ ( 𝐹 “ 𝑏 ) ⊆ ran 𝐹 |
6 |
|
f1ofo |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
8 |
|
forn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
10 |
5 9
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ⊆ 𝐵 ) |
11 |
3 10
|
elpwd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ∈ 𝒫 𝐵 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝐹 “ 𝑏 ) ∈ 𝒫 𝐵 ) |
13 |
|
imassrn |
⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ ran ◡ 𝐹 |
14 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
15 |
|
f1odm |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → dom 𝐹 = 𝐴 ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
17 |
14 16
|
eqtr3id |
⊢ ( 𝜑 → ran ◡ 𝐹 = 𝐴 ) |
18 |
13 17
|
sseqtrid |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
19 |
2 18
|
elpwd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
21 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
22 |
21
|
adantl |
⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑎 ⊆ 𝐵 ) |
23 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
24 |
7 22 23
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) |
26 |
|
imaeq2 |
⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝐹 “ 𝑏 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) ↔ 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
28 |
25 27
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
29 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
30 |
1 29
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
31 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴 ) |
32 |
31
|
adantr |
⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑏 ⊆ 𝐴 ) |
33 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑏 ⊆ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) |
34 |
30 32 33
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) |
36 |
|
imaeq2 |
⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) |
37 |
36
|
eqeq2d |
⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) ) |
38 |
35 37
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) → 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ) ) |
39 |
28 38
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
40 |
4 12 20 39
|
f1o2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐵 ) |