| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1opw2.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 2 |
|
f1opw2.2 |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ∈ V ) |
| 3 |
|
f1opw2.3 |
⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ∈ V ) |
| 4 |
|
eqid |
⊢ ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) = ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) |
| 5 |
|
imassrn |
⊢ ( 𝐹 “ 𝑏 ) ⊆ ran 𝐹 |
| 6 |
|
f1ofo |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 8 |
|
forn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 10 |
5 9
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ⊆ 𝐵 ) |
| 11 |
3 10
|
elpwd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝐹 “ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 13 |
|
imassrn |
⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ ran ◡ 𝐹 |
| 14 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
| 15 |
|
f1odm |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → dom 𝐹 = 𝐴 ) |
| 16 |
1 15
|
syl |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 17 |
14 16
|
eqtr3id |
⊢ ( 𝜑 → ran ◡ 𝐹 = 𝐴 ) |
| 18 |
13 17
|
sseqtrid |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
| 19 |
2 18
|
elpwd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
| 21 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑎 ⊆ 𝐵 ) |
| 23 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
| 24 |
7 22 23
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
| 25 |
24
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 26 |
|
imaeq2 |
⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝐹 “ 𝑏 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 27 |
26
|
eqeq2d |
⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) ↔ 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
| 28 |
25 27
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 29 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 30 |
1 29
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 31 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑏 ⊆ 𝐴 ) |
| 33 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑏 ⊆ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) |
| 34 |
30 32 33
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) |
| 35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) |
| 36 |
|
imaeq2 |
⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) |
| 37 |
36
|
eqeq2d |
⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) ) |
| 38 |
35 37
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) → 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 39 |
28 38
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 40 |
4 12 20 39
|
f1o2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐵 ) |