| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐹 “ 𝑏 ) ) = ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐹 “ 𝑏 ) ) |
| 2 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 3 |
2
|
elin2d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑏 ∈ Fin ) |
| 4 |
|
f1ofun |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐹 ) |
| 5 |
|
elinel1 |
⊢ ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑏 ∈ 𝒫 𝐴 ) |
| 6 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑏 ⊆ 𝐴 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑏 ⊆ 𝐴 ) |
| 9 |
|
f1odm |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → dom 𝐹 = 𝐴 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → dom 𝐹 = 𝐴 ) |
| 11 |
8 10
|
sseqtrrd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑏 ⊆ dom 𝐹 ) |
| 12 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ 𝑏 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐹 “ 𝑏 ) ) |
| 13 |
4 11 12
|
syl2an2r |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐹 “ 𝑏 ) ) |
| 14 |
|
fofi |
⊢ ( ( 𝑏 ∈ Fin ∧ ( 𝐹 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐹 “ 𝑏 ) ) → ( 𝐹 “ 𝑏 ) ∈ Fin ) |
| 15 |
3 13 14
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑏 ) ∈ Fin ) |
| 16 |
|
imassrn |
⊢ ( 𝐹 “ 𝑏 ) ⊆ ran 𝐹 |
| 17 |
|
f1ofo |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 18 |
|
forn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 20 |
16 19
|
sseqtrid |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐹 “ 𝑏 ) ⊆ 𝐵 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑏 ) ⊆ 𝐵 ) |
| 22 |
15 21
|
elpwd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 23 |
22 15
|
elind |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑏 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 25 |
24
|
elin2d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ∈ Fin ) |
| 26 |
|
dff1o3 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Fun ◡ 𝐹 ) ) |
| 27 |
26
|
simprbi |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Fun ◡ 𝐹 ) |
| 28 |
|
elinel1 |
⊢ ( 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) → 𝑎 ∈ 𝒫 𝐵 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ∈ 𝒫 𝐵 ) |
| 30 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ⊆ 𝐵 ) |
| 32 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
| 34 |
|
f1odm |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → dom ◡ 𝐹 = 𝐵 ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → dom ◡ 𝐹 = 𝐵 ) |
| 36 |
31 35
|
sseqtrrd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ⊆ dom ◡ 𝐹 ) |
| 37 |
|
fores |
⊢ ( ( Fun ◡ 𝐹 ∧ 𝑎 ⊆ dom ◡ 𝐹 ) → ( ◡ 𝐹 ↾ 𝑎 ) : 𝑎 –onto→ ( ◡ 𝐹 “ 𝑎 ) ) |
| 38 |
27 36 37
|
syl2an2r |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 ↾ 𝑎 ) : 𝑎 –onto→ ( ◡ 𝐹 “ 𝑎 ) ) |
| 39 |
|
fofi |
⊢ ( ( 𝑎 ∈ Fin ∧ ( ◡ 𝐹 ↾ 𝑎 ) : 𝑎 –onto→ ( ◡ 𝐹 “ 𝑎 ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ Fin ) |
| 40 |
25 38 39
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ Fin ) |
| 41 |
|
imassrn |
⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ ran ◡ 𝐹 |
| 42 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
| 43 |
42 9
|
eqtr3id |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran ◡ 𝐹 = 𝐴 ) |
| 44 |
41 43
|
sseqtrid |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
| 46 |
40 45
|
elpwd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
| 47 |
46 40
|
elind |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 48 |
5 28
|
anim12i |
⊢ ( ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) |
| 49 |
30
|
adantl |
⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑎 ⊆ 𝐵 ) |
| 50 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
| 51 |
17 49 50
|
syl2an |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
| 52 |
51
|
eqcomd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 53 |
|
imaeq2 |
⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝐹 “ 𝑏 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 54 |
53
|
eqeq2d |
⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) ↔ 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
| 55 |
52 54
|
syl5ibrcom |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 56 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 57 |
6
|
adantr |
⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑏 ⊆ 𝐴 ) |
| 58 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑏 ⊆ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) |
| 59 |
56 57 58
|
syl2an |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) |
| 60 |
59
|
eqcomd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) |
| 61 |
|
imaeq2 |
⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) |
| 62 |
61
|
eqeq2d |
⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) ) |
| 63 |
60 62
|
syl5ibrcom |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) → 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 64 |
55 63
|
impbid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 65 |
48 64
|
sylan2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 66 |
1 23 47 65
|
f1o2d |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐹 “ 𝑏 ) ) : ( 𝒫 𝐴 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐵 ∩ Fin ) ) |